Developing maps of affinely flat lie groups

  • Kim, Hyuk (Department of Mathematics, Seoul National University, Seoul 151-742)
  • Published : 1997.11.01


In this paper, we study the developing maps of the Lie groups with left-invariant affinely flat structures. We make some bacis observations on the nature of the developing images and show that the developing map for an incomplete affine structure splits as a product of a covering map of codimension 1 and a diffeomorphism of dimension 1.


  1. Amer. J. Math. v.99 Simply transitive groups of affine motions L. Auslander
  2. J. Differential Geom. v.41 Une nilvariete non affine Y. Benoist
  3. J. Diff. Geom. v.31 Sur les structures affines homotopes a zero des groups de Lie N. Boyom
  4. On transitive left-symmertric algebras;Non-associa- tive algebra and its applications A. Elduque;H.C. Myung;S. Gonzalez(ed.)
  5. J. Differential Geom. v.26 Flat spacetimes D. Fried
  6. Advances in Math. v.47 Three dimensional affine crystallographic groups D. Fried;W. Goldman
  7. Ann. Inst. Fourier(Grenoble) v.29 Radical d'une algebre symmertrique a gauche J. Helmstetter
  8. to appear in J. Korean Math. Soc. The geometry of left-symmetric algebra H. Kim
  9. Internat. J. Math. v.3 Moduli of flat psdeudo-Riemannian structures on nilpotent Lie groups H. Kim;H. Lee
  10. Bull. Soc. Math. France v.89 Domains bornes homogenes et orbites de groupes de transformations affines J.L Koszul
  11. Comptes-rendus de l'Academie des Sciences, $n^o$ v.259 Sous-groupes discrets des groups de transformations affines admettant une trajectoire convexe J.L.Koszul
  12. J. Differential Geom v.24 Complete left-invariant affine structures on nilpotent Lie groups H. Kim
  13. Trans. Amer. Math. Soc. v.295 Affine manifolds and orbits of algebraic groups W. Goldman;M. Hirsch
  14. Advances in Math v.21 Curvatures of left invariant metrics on Lie groups J. Milnor
  15. Advances in Math. v.25 On fundamental groups of complete affinely flat manifolds J. Milnor
  16. Osaka J. Math. v.11 The affine structure on the real two-torus T. Nagano;K. Yagi
  17. J. Differential Geometry v.16 Flat left-invariant connections adapted to the automorphism structure of a Lie group A.M. Perea
  18. Osaka J. Math v.16 Left-invariant Lorentz metrics on Lie groups K. Nomizu
  19. Proc. Amer. Math. Soc. v.47 Translations in certain groups of affine motions J. Scheunman
  20. Math. Ann. v.293 The structure of complete left-symmetric algebras D. Segal
  21. Transl. Moscow Math. Soc. v.12 The theory of convex homogeneous cones E.B. Vinberg