Some modules in category O and their decomposition over generalized kac-moody lie algebras

  • Kim, Wansoon (Department of Mathematics, Hoseo University, Asan 337-850)
  • Published : 1997.11.01

Abstract

We extent the notion of equivalent relation $\approx$ for Kac-Moody algebras to generalized Kac-Moody algebras and prove some analogues of results for Kac-Moody algebras.

References

  1. I. Math. Z. v.10 Projective modules over graded Lie algebras A. Rocha- Caridi;N.R. Wallach
  2. Adv. in Math. v.45 Structure of some categories of representations of infinite dimensional Lie algrbras V.V. Deodhar;O. Gabber;V.G. Kac
  3. I. Publ. RIMS. Kyoto Univ. v.29 The strong Bernstein-Gelfand-Gelfand resolutions for generalized Kac Moody algebras S. Naito
  4. J. of Algebra v.167 The strong Bernstein-Gelfand-Gelfand resolutions for generalized Kac Moody algebras, Ⅱ S. Naito
  5. Adv. in Math. v.53 Infinite dimensional Lie algebras, theta functions and modular forms V.G. Kac;D.H. Peterson