Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 34 Issue 4
- /
- Pages.561-571
- /
- 1997
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
On solution and stability of functional equation $f(x+y)^2=af(x)f(y)+bf(x)^2+cf(y)^2$
- Jung, Soon-Mo (Mathematics Section, College of Science & Technology, Hong-Ik University, Chochiwon 339-800)
- Published : 1997.11.01
Abstract
The general (continuous) solution and the asymptotic behaviors of the unbounded solution of the functional equation $f(x + y)^2 = af(x)f(y) + bf(x)^2 + cf(y)^2$ and the Hyers-Ulam stability of that functional equation for the case when a = 2 and b = c = 1 shall be investigated.
File
References
- Aeq. Math. v.35 Relations de dependence entre les equations fonctionnelles de Cauchy J. Dhombres
- Proc. Nat. Acad. Sci. U.S.A. v.27 On the stability of the linear functional equation D.H. Hyers
-
Proc. Amer. Math. Soc.
v.19
The functional equation f(xy)+
$f(xy^{-1})$ =2f(x)f(y) for groups Pl. Kannappan - Warszawa-Krakow:Panstwo-we Wydawnictwo Naukowe An introduction to the theory of functional equations and inequalities M. Kuczma
- Proc. Amer. Math. Soc. v.72 On the stability of the linear mapping in Banach spaces Th. M. Rassias
- Aeq. Math. v.45 On two conditional forms of the equation ∥f(x+y)∥=∥f(x)+f(y)∥ F. Skof