A simple model for a mush

  • Published : 1997.11.01


We have derived a simple ODE system for the mush by assuming that the temperature T, the solid fraction $\phi$ and the vertical component $\omega$ of the velocity, depend on z only. Analytical solutions of the system have presentd in case of $\omega << 1 and \phi << 1$.



  1. J. Fluid Mech. v.227 Experimental study of directional solidfication of of aqueous ammonium chloride solution Chen, C.F.;Chen, F.
  2. Metall. Trans. v.1 The origin of freckles in unidirectionally solidified castings Copley, S.M.;Giamei, A.F.;Johnson, S.M.;HORNBECKER, M. F.
  3. IMA J. Appl. Math. v.35 The formation of freckles in binary alloys Fowler, A.C.
  4. Phil. Trans. R. Soc. Lond. v.A345 Channel convection in Partly solidified systems Hellawell, A.;Sarazin, J.R.;Steube, R.S.
  5. Q. J. Appl. Maths v.36 A thermodynamically consistent model of a mushy zone Hills, R.N.;Loper, D.E.;Roberts, P.H.
  6. J. Fluid Mech. v.212 The fluid mechanics of solidification Huppert, H.E.
  7. Nature v.314 Dynamic solidification of a binary alloy Huppert, H.E.;Worster, M.G.
  8. Rev. Mod. Phys. v.52 Instabilities and pattern formation in crystal growth Langer, J.S.
  9. Gephys. Astrophys. Fluid. Dyn. v.25 Structure of the inner core boundary Loper, D.E.
  10. Structure and dynamics of partially solidified systems Loper, D.E.
  11. In Stellar and Planetary Magnetism Towards a theory of the structure and evolution of a dendrite layer Roberts, P.H. & Loper, D.E.;Soward, A.M.(ed.)
  12. Nature v.338 Compositional convection in viscous melts Tait, S.;Jaupart, C.
  13. J. Geophys. Res. v.97 no.B5 Compositional convection in areactive crystalline mush and the evoultion of porosity Tait, S.;Jaupart, C.
  14. J. Fluid Mech. v.167 Solidification of an alloy from a cooled boundary Worster, M.G.
  15. J. Fluid Mech. v.224 it Natural convection in a mushy layer Worster, M.G.
  16. J. Fluid Mech. v.237 it Instabilities of the liquid and mushy regions during solidification of alloys Worster, M.G.