Random completley generalized nonlinear variational inclusions with non-compact valued random mappings

  • Huang, Nan-Jing (Department of Mathematics, Sichuan Union University, Chengdu, Sichuan 610064, pp. R. China) ;
  • Xiang Long (Department of Mathematics, Gyeongsang National University, Chinju 660-701) ;
  • Cho, Yeol-Je (Department of Mathematics, Gyeongsang National University, Chinju 660-701)
  • Published : 1997.11.01

Abstract

In this paper, we introduce and study a new class of random completely generalized nonlinear variational inclusions with non-compact valued random mappings and construct some new iterative algorithms. We prove the existence of random solutions for this class of random variational inclusions and the convergence of random iterative sequences generated by the algorithms.

References

  1. Variational and quasivariational ineqyalities, application to free boundary problems C. Baiocchi;A. Capelo
  2. Stochastic control by functional analysis method A. Bensoussan
  3. C. R. Acid. Sci. v.276 Control implusinnel et inequations quasivariationalles stationaries A. Bensoussan;M. Goursat;J.L. Lions
  4. Impluse control and quasivariational inequalities A. Bensoussan;J. L. Lions
  5. Fixed Point Theory with Applications S.S. Chang
  6. Shanghai Scienctific and Tech Variational Inequality and Complementarity Problem Theory with Applications S.S. Chang
  7. J. Math. Anal. Appl. v.158 Generalized strongly nonlinear quasi-complementarity problems in Hilbert spaces S.S. Chang;N.J. Huang
  8. Math. Japonica v.36 Generalized multivalved implicit complementarity problems in Hilbert spaces S.S. Chang;N.J. Huang
  9. Indian J. Math. v.35 Generalized random multivalued quasi-complementarity problems S.S. Chang;N.J. Huang
  10. Acta Math. Appl. Sinica v.16 Random generalized set-valued quasi-complementarity problems S.S. Chang;N.J. Huang
  11. J. Math. Res. Exposition v.9 On the problems for a class of random variational inequalities and quasi-variational inequalities S. S. Chang;Y. G. Zhu
  12. Acta. Math. v.115 On some nonlinear elliptic differential functional equations P. Hartman;G. Stampacchia
  13. J. Math. Anal. Appl. v.185 A perturbed algorithm for variational inclusions A. Hassouni;A. Moudafi
  14. Fund. Math. v.87 Measurable relations C. J. Himmelberg
  15. J. Sichuan Univ. v.31 Random general set-valued strongly nonlinear quasi-cariational inequalities N.J. Huang
  16. J. Liaoning Normal Univ. v.18 Random generalized setvalued implicit variational inequalities N.J. Huang
  17. Appl. Math. Lett. v.9 Generalized nonlinear variational inclusions with non-compact valued mappings N.J. Huang
  18. Far East J. Math. Sci. v.2 Some results on random generalized games and random quasi-variational inequalities T. Husain;E. Tarafadar;X.Y. Yuan
  19. J. Fac. Sci. Univ. Tokyo. v.37 A special variational inequality and the implicit complementarity problem G. Isac
  20. Lecture Notes in Mathematics v.543 Implicit variational problems and quasi-varioational inequlities U. Mosco
  21. C.R. Math. Rap. Acad. Sci. Canada v.4 Strongly nonlinear variational inequlities M. A. Noor
  22. J. Math. Anal. Appl. v.123 On the nonlinear complementarity problem M.A. Noor
  23. Appl. Math. Left. 1 Quasivariational inequalities M.A. Noor
  24. J. Comput. Appl. Math. v.47 Some aspects of variational inequalities M.A. Noor;K. I. Noor;T. M. Rossias
  25. J. Math. Anal. Appl. v.149 Strongly nonlinear quasivariational inequlities A.H. Siddiqi;Q.H. Ansari
  26. J. Math. Anal. Appl. v.166 General strongly nonlinear variational inequlities A.H. Siddiqi;Q.H. Ansari
  27. Math. Nachr v.125 Random quasi-variational inequality N. X. Tan
  28. PanAmer. Math. J. v.4 Random variational inequlities and applications to random minimization and nonlinear boundary problems K.K. Tan;E. Tarafdar;X.Z. Yuan
  29. J. Appl. Stoch. Anal. v.7 Non-compact random generalized games and random quasi-variational inequlities X. Z. Yuan
  30. J. Math. Anal. Appl. v.193 Completely generalized strongly nonlinear quasicomplementarity problems in Hilbert spaces L.C Zheng