On the strong law of large numbers for pairwise I. I. D. random variables

  • Sung, Soo-Hak (Department of Applied Mathematics, Pai Chai University, Taejon 302-735)
  • Published : 1997.11.01

Abstract

This paper is concerned with the general strong law of large numbers for pairwise independent distributed random variables. Necessary and sufficient conditions for the SLLN are obtained.

References

  1. Sankhya Series A v.54 Cesaro uniform integrability and the strong law of large numbers T.K. Chandra;A. Goswami
  2. Probability Theory:independence, Intechangeability, Martingales Y.S. Chow;H. Teicher
  3. Acta Math. Hungar. v.42 On the strong law of large numbers for pairwise independent random variables S. Csorgo;K. Tandori;V. Totik
  4. Acta Math. Hungar. v.45 On the convergence of ceries of pairwise independent random variables S. Csorgo;K. Tandori;V. Totik
  5. Z. Wahrsch. Verw. Gebiete v.55 An elementary proof of the strong law of large numbers N. Etemadi
  6. J. multicariate Analysis v.13 On the laws of large numbers for nonnegative random variables N. Etemadi
  7. J. Multivariate Analysis v.13 Stability of sums of weighted nonnegative random variables N. Etemadi
  8. Probability Theory Ⅱ(4th ed.) M. Loeve
  9. Statist & Provavility Letters v.25 On the strong law of large numbers for sums of pairwise independent random variables A. Martikainen
  10. Almost Sure Convergence W.F. Stout