ON THE STRUCTURE OF $V(ZS_4)$

  • Shin, Hyunyong (Department of Mathematics, Korea National University) ;
  • Lyou, Ikseung (Department of Mathematics, Korea National University)
  • Published : 1997.11.01

Abstract

The group $V(ZD_4)$ of units of augmentation 1 in the integral group ring $ZD_4$ is characterized as the generalized free product of $D_4$ and $D_4$ with the centers amalgamated.

References

  1. Munchen v.4 Projecktive Moduln uber Quaternionen und Diedergruppen I.H. Cho
  2. Algebraic Theory of the Bianchi Groups B. Fine
  3. Integral Matrices M. Newman
  4. J. Number Theory v.13 Einheiten in $Z[D_{2m}]$ E. Kleinert
  5. J. Korean Math. Soc. v.20 The unit group of the integral group ring $ZD_n$ S.A. Park.
  6. J. Algebra v.69 Units in integral group rings D. S. Passman;P.F. Smith
  7. Bol. Soc. Mat. Brasil v.4 The group of units of the integral group ring $ZD_4$ C. Plocino Milies
  8. A course in the theory of groups D.J.S. Robinson
  9. in this Bulletin On free product in $V (ZS_3)$ H. Shin;I. Lyou;M.R. Dixon
  10. Bull. Korean Math. Soc. v.18 The unit group of the integral group ring $ZD_4$ J.S. Shin