Magnetic and Electrical Properties of the Spin Valve Structures with Amorphous CoNbZr

  • Cho, Hae-Seok (Center for Materials for Informatin Technology, University of Alabama)
  • Published : 1997.09.01

Abstract

A spin valve structure of NiO(40 nm)/Co(2 nm)/Cu(2.6 nm)/Co(x nm)/Ta(5 nm) has been investigated for the application of magnetic random access memory (MRAM). The spin valve structure exhibited very large difference in the coercivities between pinned and free layers, a relatively high GMR ratio, and a low free layer coercivity. The spin valves were prepared by sputtering and were characterized by dc 4-point probe, and VSM. The spin valves with combined free layer exhibited a maximun GMR ratio of 10.4% with a free layer coercivity of about 82 Oe. The spin valves with a single 10 nm thick a-CoNbZr free layer exhibited a GMR ratio of about 4.3% with a free layer coercivity of about 12 Oe. The GMR ratio of the spin valves increased by addition of Co between Cu and a-CoNbZr. It has been confirmed that the coercivity of free layer can be decreased by increasing the thickness of a-CoNbZr. It has been confirmed that the coercivity of free layer can be decreased by increasing the thickness of a-CoNbZr layer without losing the GMR ratio substantially, which was mainly due to high resistivity of the amorphous "layers".

Keywords

References

  1. J. Appl. Phys. v.69 B. Dieny;V. S. Speriosu;S. Metin;S. S. P. Parkin;B. A. Gurney;P. Baumgart;D. R. Wilhoit
  2. F. Ueda;H. S. Cho;C. Hou;H. Fujiwara
  3. Phys. Rev. v.43 B. Dieny;V. S. Speriosu;S. S. P. Parkin;B. A. Gurney;D. R. Wilhoit;D. Mauri
  4. IEEE Trans. Magn. v.30 D. E. Heim;R. E. Fontana, Jr.;C. Tsang;V. S. Speriosu;B. A. Gurney;M. L. Williams
  5. Cah. Phys. v.12 L. Neel
  6. J. Phys. Soc. Jpn v.59 T. Shinjo;H. Yamamoto
  7. MMM-Intermag Proceedings A. Chaiken;G. Prinz;J. Krebs
  8. Thin Solid Films v.216 J. M. Daughton
  9. J. Appl. Phys. v.78 W. F. Egelhoff, Jr.;T. Ha;R. D. K. Misra;Y. Kadmon;J. Nir;C. J. Powell;M. D. Stiles;C.-L. Lin;J. M. Sivertsen;J. H. Judy;K. Takano;A. E. Berkowitz;T. C. Anthony;J. A. Brug
  10. IEEE Tans. Mang. v.Mag-19 H. Sakakima
  11. Appl. Phys. Lett. v.61 S. S. P. Parkin
  12. IEEE Trans. Mang. v.32 Y. Hamakawa;H. Hoshiya;T. Kawabe;Y. Suzuki;R. Arai;K. Nakamoto;M. Fuyama;Y. Sugita
  13. IEEE Trans. Magn. v.31 D. D. Tang;P. K. Wang;V. S. Sperious;S. Le
  14. J. Appl. Phys. v.79 Z. Wang;Y. Nakamura
  15. J. Appl. Phys. v.53 Y. Shimada;H. Kojima