A Study on the Removal of Low-Concentration Ozone by means of Activated Carbon

활성탄을 이용한 저농도 오존(OZONE)제거에 관한 연구

  • 양원호 (서울대학교 보건대학원 환경보건학과) ;
  • 최경호 (서울대학교 보건대학원 환경보건학과) ;
  • 정문식 (서울대학교 보건대학원 환경보건학과)
  • Published : 1997.06.01

Abstract

This study was carried out to find the adverse health effects of ozone by papers, the potential indoor sources of ozone by papers, and then the removal mechanism of ozone by experiments. The exposure of individuals to excessive levels of ozone both in the industrial and ambient environment is a continuing public health concern. Ozone indoors may play a role in generating secondary pollutants that may have adverse health effects. The removal efficiency of ozone was studied by (1) the effect of concentration on breakthrough time, (2) the effect of flow rate on breakthrough time, (3) the effect of adsorbent's weight on breakthrough time, (4) the effect of temperature on breakthrough time, (5) the application of Langmuir's isotherm equation in using activated carbon. The followings are the conclusions that were derived from this study. 1. In the effect of concentration on breakthrough time, the adsorption capacity of activated carbon was inversely proportional to ozone concentratuion (0.1, 0.2, 0.3 ppm). 2. In the effect of flow rate on breakthrough time, the service life of activated carbon was inversely proportional to flow rate (2, 8, 14l/min). 3. The difference in removal efficiency of ozone between weights(100 mg and 150 mg) was seen. And when weight of activated carbon was 100 mg and 150 mg, pressure loss was 4-5mmHg and 6-7mmHg, respectively. It is required to study relations among flow rate and adsorbent's weight and ventilation quantity, too. 4. Generally, Langmuir's equation, one of the oldest and most used frequently isotherm equation, applies to chemisorption. In case of ozone, when the weight of activated carbon was 70 mg and temperature 40, slope(1/a) was $6.25\times 10^{-1}$ and intercept(1/ab) was $1.9\times 10^{-4}$ (average r=0.94).