Theoretical Study on Antitumor Activity of trans-Platinum(Ⅱ) Complexes with Planar Ligands (Ⅱ)

평면형리간드가 배위된 trans-백금(Ⅱ) 착물의 항암활성에 관한 이론적 연구 (제2보)

  • 송영대 (영남대학교 이과대학 화학과) ;
  • 김정성 (대구대학교 사범대학 화학교육과) ;
  • 박병각 (영남대학교 이과대학 화학과)
  • Published : 19970600

Abstract

Platinum(II) complexes(where, $[Pt(L)_2X_2]$; L=isoxazole(isox), 3,5-dimethylisoxazole(3,5-diMeisox), 3-methyl,5-phenylisoxazole(3-Me,5-Phisox), and 4-amino-3,5-dimethylisoxazole(4-ADI); X=Cl, Br) with planar ligands are investigated on antitumor activity by MM2 and EHMO calculations. It was found that, the net atomic charges of the halogen atoms in all of cis-, trans-isomers are greater than that of the nitrogen with planar form, indicating that ionic character of Pt-X bond is greater than that of Pt-N. Also, the ${\sigma}MO$ energy level($E{\sigma}_{(Pt-X)}$) of the interaction between $d_{x2-y2}$ orbital of Pt atom and $p_x$ orbital of X found to be higher than that of between $d_{x2-y2}$ orbital of Pt atom and $p_x$ orbital of N about all the complexes. It is found that bond strength of between Pt and X atom is weaker than that of between Pt and N atom. The ${\sigma}MO$ energy level($E{\sigma}_{(Pt-X)}$) of trans- complexes found to be higher than that of cis- complexes, as a result of bond strength of Pt-X in cis- and trans-complexes, for all the complexes. The degree of dissociation of X atom in Pt-X bond for trans-complexes are related to antitumor activity and the logIA value of inhibitory activity coefficient(IA).

Keywords

References

  1. Tables of Interatomic Distances and Configuration in Molecules and Ions no.18 Sutton, L. E.
  2. J. Am. Chem. Soc. v.118 Takahara, P. M.;Frederick, C. A.;Lippard, S. J.
  3. J. Biol. Chem. v.216 Benesch, E;Harly, H. A.;Benesch, R.
  4. J. Inorg. Biochem. v.15 Zakharova, I. A.;Salyn, J. V.;Tatjanenko, L. V.;Mashkovsky, Y. S.;Ponticell, G.
  5. Biofisica v.22 Zakharova, I. A.;Tatjanenko, L. V.;Yu. Sh. Moshkovsky, Y. S.;Raykhman, L. M.;Kondratjeva, T. A.
  6. Platinum Coordination Compounds in Cancer Chemotheraphy Hacker, M. P.(ed.);Douple, E. B.(ed.);Krakoff, I. H.(ed.)
  7. J. Med. Chem. v.23 Farrell, N.;Ha. T. T. B.;Souchard, J. P.;Wimmer, F. L.;Cros, S.;Johnson, N. P.
  8. Inorg. Chem. v.31 Beusichem, M. V.;Farrell, N.
  9. 分子科學與 化學硏究 第2期 v.8 Tang, W. X.;Dong, Y.;Qu, Y.;Dai, A. B.
  10. 藥學學報, Acta Pharmaceutica Sinica v.21 Qu, Y;Tang, W. X.;Dai, A. B.
  11. Dev. Oncol. v.17 Gill, D. S.
  12. J. Inorg. Nucl. Chem. v.37 Pinna, R.;Ponticelli, G.;Preti, C.
  13. Transition Met. Chem. v.1 Pinna, R.;Ponticelli, G.;Preti, C.;Tosi, G.
  14. J. Chem. Phys. v.39 Hoffmann, R.
  15. J. Chem. Phys. v.36 Hoffmann, R.;Lipscomb, W. N.
  16. J. Chem. Phys. v.37 Hoffmann, R.;Lipscomb, W. N.
  17. J. Am. Chem. Soc. v.100 Ammeter, J. H.;Burg, H. B.;Thibwault, J. C.;Hoffmann, R.
  18. Tables of Interatomic Distances and Configuration in Molecules and Ions no.11 Sutton, L. E.
  19. Inorg. Chem. v.33 Bleomink, M. J.;Dorenbos, J. P.;Heetebrij, R. J.;Keppler, B. K.;Reedijk, J.;Zahn, H.
  20. Biological Trace Element Research v.5 Cracunescu, D.;Ghirvu, C.;Lo'pez, A. D.
  21. Chem. Biol. Interactions v.30 Boudreaux, E. A.;Carsey, T. P.
  22. Progr. Nucl. Ac. Res. Mol. Biol. v.22 Robert, J. J.;Thomson, A. J.
  23. QCPE v.11 Hoffmann, R.
  24. J. Chem. Soc. Dalton Trans. v.S1 Orpen, A. G.;Brammer, L.;Allen, F. H.;Kennard, O.;Watson, D. G.;Taylor, R.
  25. J. Kor. Chem. Soc. v.29 Park, B. K.;Yeo, H. J.
  26. Nature(London) v.222 Rosenberg, B;van Camp, L.;Trosko, J. E.;Mansour, V. H.
  27. Proc. 7th Conference of Coordination Chemistry Zakharova, I. A.;Ashak, J.;Ankovsky, J. A. B.;Tatjanenko, L. V.;Moshkovsky, Y. S.
  28. J. Med. Chem. v.33 Farrell, N.;Qu, Y.;Hacker, M. P.
  29. J. Biol. Chem. v.216 Benesch, E.;Harly, H. A.;Benesch, R.