Correlation between Glycemic Index and in vitro Starch Hydrolysis of Cereals

곡류의 혈당지수와 전분 가수분해율과의 상관관계

  • Published : 1998.10.01


To see the correlation between the rate of in vitro starch hydrolysis and the glycemic index, an in vitro digestion was carried out by incubating the cereal samples for 2 hours with ${\alpha}-amylase$ in dialysis tubing. Also the levels of blood glucose were measured over 2 hours after feeding healthy volunteers with 50 g carbohydrate portions. Hydrolysis area, hydrolysis index (HI) and the dialysate content of carbohydrate throughout the digestion time for barley was significantly below those for other cereals (p<0.05), and unpolished glutinous rice was significantly above (p<0.05). The GI-glucose of barley $(57%{\pm}7)$ to glucose as standard was significantly (p<0.05) lower than those of other cereals whereas the GI-glucose of glutinous rice $(110%{\pm}8)$ was significantly higher (p<0.05) than other cereals. The GI-rice values to rice as standard were $122%{\pm}4$ for glutinous sorghum, $116%{\pm}13$ for job's tear, $115%{\pm}13$ for glutinous millet, $106%{\pm}6$ for unpolished glutinous rice, $102%{\pm}7$ for glutinous rice, $100%{\pm}0$ for rice, $90%{\pm}12$ for unpolished rice, $85%{\pm}6$ for foxtail millet, $79%{\pm}5$ for buckwheat and $63%{\pm}6$ for barley. The GI-rice was significantly correlated to hydrolysis area and HI (r=0.75, p<0.01). It suggests that the in vitro starch hydrolysis offers good potential to predict the in vivo glycemic response of starch foods.


glycemic index;hydrolysis index;starch hydrolysis;cereal