Study on the Production of L-Latic Acid from Soluble Starch by Streptococcus sp. JEJ-6

Streptococcus sp. JEJ-6에 의한 가용성 전분으로부터 L-Lactic Acid 생성에 관한 연구

  • 전홍기 (부산대학교 미생물학과) ;
  • 조영배 (부산대학교 미생물학과) ;
  • 전은주 (부산대학교 미생물학과) ;
  • 백형석 (부산대학교 미생물학과)
  • Published : 1998.06.01

Abstract

The strain producing L-lactic acid from starch was isolated from kimchi. The isolated strain was identified as a homofermentative Streptococcus sp. through its morphological, cultural, biochemical characteristics, and named Streptococcus sp. JEJ-6. Lactic acids are of two types, one L-specific and the other D-specific form in a stereospecific form. Streptococcus sp. JEJ-6 produced selectively L-lactic acid from all of the tested carbon sources. The optimum conditions for the L-lactic acid production from the isolated microorganism were determined. For the maximum yield of L-lactic acid from Streptococcus sp. JEJ-6, the cell should be harvested at the early stationary phase, and the growth temperature, pH, and NaCl concentration should be 37$^{\circ}C$, pH 7.0 and 0.1%, respectively. 4% Soluble starch as substrate and organic nitrogen sources such as peptone and yeast extract should be used for the best yield. The optimum pH of the nicotinamide adenine dinucleotide(NAD)-dependent and NAD-independent lactate dehydrogenase(LDH) activities was pH 8.5 and pH 7.0, respectively.

References

  1. 신판발효공학(수정판) 이종갑;정지훈;박윤정;성낙계
  2. 생활미생물학(개정증보판) 생분해성 플라스틱과 지구환경 전홍기;이재동;坂井拓夫
  3. J. Fermentation and Bioengineering v.67 Batch culture kinetics of L-lactate fermentation empoloying Streptococcus sp. IO-1 Ayaaki, I.;Ohta, T.
  4. Biotech. Bioengin. v.31 L-Lactic acid production from starch by coimmobilized mixed culture system of Aspergillus awamori and Streptococcus lactis Kursawa, H.;Ishikawa, H.;Tanaka, H.
  5. Biotech. Bioengin. v.28 Ethanol production from starch by a coimmobilized imxed culture system of Aspergillus awamori and Zymomonas mobilis Tanaka, H.;Kurosawa, H.;Murakami, H.
  6. J. Bacteriol. v.164 Efficient synthesis and secretion of a Thermophilic α-amylase gene Tsukagoshi, N.;Iritani, S.;Sasaki, T.;Takemura, T.;Ihara, H.;Idota, Y.;Yamagata, H.;Udaka, S.
  7. Applied Environ. Microbiol. v.60 Use of homolgous expression-secretion signals and vector-free stable chromosomal integration in engineering of Lactobacillus plantarum for α=amylase and levanase expression Pascal, H.;Ferain, T.;Garmyn, D.;Bernard, N.;Delcour, J.
  8. Applied Environ. Microbiol. v.60 Development of an amylolytic Lactobacillus amylovorus α-amylase gene Fitzsimons, A.;Hols. P.;Jore, J.;Leer, R. J.;O'connell, M.;Delcour, J.
  9. Applied Environ. Microbiol. v.54 Amylolytic activity of selected species of ruminal bacteria Cotta, M. A.
  10. Appl. Microbiol. Biotechnol. v.36 Isolation and physiological study of an amylolytic strain of Lactobacillus plantarum Eric, G.;Brauman, A.;Keteke, S.;Lelong, B.;Raimbault, M.
  11. Applied Environ. Microbiol. v.55 Integration and expression of α-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome Trees, S.;Mahillon, J.;Joos, H.;Dhaese, P.;Michiels, I.
  12. Bergery's Manual of Determinative Bacteriology(8th ed.) Buchanan, R. E.;Gibbons, N. E.
  13. Bergey's Maunal of Systematic Bacteriology v.2 Sneath, P. H. A.;Mair, N. S.;Sharphe, M. E.;Holt, J. G.
  14. Appl. Microbiol. Biotechnol. v.43 Development of yeast starins for the efficient utilization of starch: evaluation of constructs fusion proteins Moraes, L. M. P.;Astolfi-filho, S. Oliver, S. G.
  15. Methods in enzymatic analysis v.3 L-(+)-Lactate determination with lactate dehydrogenase and NAD Gutmann, I.;Wahlefeld, A. W.;Bergeyer, H. U.(ed.)
  16. J. Bacteriol. v.174 Sugar-glycerol cofermentations in Lactobacilli : the fate of lactate Cunha, M. V.;Foster, M. A.
  17. Analytical Biochem. v.127 Biouminescent assays of picomole levels of varios metabolites using immobilized enzymes Wienhausen, G.;Deluca, M.
  18. J. Bacteriol. v.176 Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant species Lactobacillus casei, Pediococcus pentosaceus gallingarum Billot-Klein, D.;Gutmann, L.;Sable, S.;Guittet, E.;Geijenooty,J. V.
  19. J. Bacteriol. v.175 Identification of a novel operon in Lactococcus lactis encoding three enzymes for lactic acid synthesis : phosphofructokinase, pyruvate kinase and lactate dehydrogenase Lianos, R. M.;Harris, C. J.;Hillier, A. J.;Davidson, B. E.
  20. Methods in enzymatic analysis v.3 D-(-)-lactate Gawehn, K.Bergmeyer, H. U.
  21. Methods in enzymatic analysis v.1 Evaluation of experimental results Bergmeyer, H. U.;Bernt, E.;Grassl, M.;Michal, G.
  22. Methods in enzymatic analysis v.1 Biochemical reagents Bergmeyer, H. U.;Bernt, E.;Grassl, M.;Michal, G.
  23. J. Bacteriol. v.108 Nicotinamide adenine dinucleotide-dependent and nicotinamide adenine dinucleotide-independent lactate dehydrogenase in homofermentative and heterofermentative lactic acid bacteria Doelle, H. W.
  24. J. Biol. Chem. v.260 Allosteric effect of fructose 1,6-bisphosphate on the conformation of $NAD^+$ as bound to L-lactate dehydrogenase from Thermus caldophilus GK24 Machida, M.;Yokoyama, S.;Maysuzwa, H.;Miyazawa, T.;Ohta, T.
  25. BIochem. Biophys. Acta v.86 The molar extinction coefficient of 2,6-dichlorophenol indophenol Armstrong, J. M.