Ab Initio Studies on Proton Affinities of Substituted Furans

치환 퓨란의 양성자 친화도에 대한 Ab Initio 연구

  • Lee, Gab Yong (Department of Chemistry, Catholic Universitry of Taegu-Hyosung) ;
  • Lee, Hyun Mee (Department of Chemistry, Catholic Universitry of Taegu-Hyosung)
  • 이갑용 (대구효성가톨릭대학교 화학과) ;
  • 이현미 (대구효성가톨릭대학교 화학과)
  • Published : 19980800

Abstract

The geometry of furan, relevant to the binding of bis-furan lexitropsin that contains this ring to the base pair of minor groove of DNA, is optimized by semiempirical (MNDO) and ab initio (Hartree-Fock) methods. The proton affinity and electronic structure are evaluated at the 6-31G and $6-31G^{\ast}$ level of theory for the optimized geometry. The proton affinities are also studied for various substituted furans with the electrondonating and -withdrawing groups to estimate the substituent effect on the proton affinity of furans. It has been found that the electron-donating substituents increase the proton affinity of furan, whereas the electron-withdrawing substituents decrease it. This result can be explained with atomic charge and electron density at oxygen of substituted furans.

Keywords

References

  1. J .Am. Chem. Soc. v.109 Kahn, S. D.;Pau, C. F.;Chamberlin, A. R.;Hehre, W. J.
  2. J. Comput. Chem. v.5 Singh, U. C.;Kollman, P. A.
  3. J. Comput. Chem. v.6 Connolly, M. L.;Olson, G. A.
  4. in Antibiotic Ⅲ. Mechanism of Action of Anricrobial and Antitumor Agents Hahn, F. E.;Corcoran, J. W.(Eds.);Hahn, F. E.(Eds.)
  5. J. Biol. Chem. v.249 Wartell, R. W.;Larson, J. E.;Well, R. D.
  6. Prog. Nucleic Acid Res. Mol. Biol. v.15 Zimmer, C. H.
  7. Proc. Natl. Acad. Sci. v.79 Patel, D. J.
  8. J. Med. Chem. v.32 Lown, J. W.;Krowicki, K.;Balzarini, J.;Newman, R. A.;de Clercq E.
  9. Organic preparations and procedures INT. v.21 Lown, J. W.
  10. Anti-Cancer Drug Design v.3 Lown, J. W.
  11. J. Kor. Chem. Soc. v.38 Lee, H. M.;Lee, G. Y.
  12. J. Am. Chem. Soc. v.99 Del Bene, J. E.
  13. J. Comput. Chem. v.12 Kabir, S.;Anne-Marie, S.
  14. J. Biomol. Struct. Dyn. v.4 Zakrzewska, K.;Lavery, R.;Pullman, B.
  15. J. Biomol. Struct. Dyn. v.5 Zakrzewska, K.;Lavery, R.;Pullman, B.
  16. J. Biomol. Struct. Dyn. v.6 Zakrzewska, K.;Lavery, R.;Pullman, B.
  17. J. Kor. Chem. Soc. v.39 no.7 Lee, H. M.;Lee, S. E.;Chang, M. S.;Park, B. K.;Lee, G. Y.
  18. J. Kor. Chem. Soc. v.42 no.1 Lee, G. Y.;Lee, H. M.
  19. HyperChem Ostlund, N.
  20. J. Chem. Soc. v.100 Del Bene, J. E.;Cohen, I.
  21. Stud. Biophys. v.24 Reinert, K. E.;Thorson, H.
  22. Journal of molecular rocognition v.2 Lee, M.;Krowicki, K.;Shea, R. G.;Lown, J. W.
  23. Interatomic distance Sutton, S. E.
  24. Mol. Biol.(Kiev) v.9 Kolchinskii, A. M.;Mirazabekov, A. D.;Zasedatelev, A. S.;Gurskii, G. V.;Grokhovskii, S. L.;Zhuze, A. L.;Gottikh, B. P.
  25. Journal of molecular recognition v.2 Lee, M.;Shea, R. G.;Hartley, J. A.;Lown, J. W.
  26. Quantitave Drug Design Martin, Y. C.
  27. In Computer Graphics Applied to Molecular Modelling. in New Methods in Drug Research v.2 O'Donnell, T. J.;Chabalowski, C. F.;Makriyannis, A.(Ed.);Prous, R.(Ed.)
  28. Proc. Natl. Acad. Sci. v.82 Kopka, M. L.;Yoon, C.;Goodsell, D.;Pjurra, P.;Dickerson, R. E.
  29. Biochemistry v.25 Lown, J. W.;Krowicki, K.;Bhat, U. G.;Skorobogaty, A.;Ward, B.;Dabrowiak, J. C.
  30. Nucl. Acids Res. v.7 Zimmer, C.;Marck, C.;Schneider, C.;Guschlbauer, W.
  31. GAUSSIAN 92 FOR WINDOWS Frisch, M. J.;Trucks, G. W.;Head-Gordon, M.;Gill, P. M. W.;Wong, M. W.;Foresman, J. B.;Johnson, B. G.;Schlegel, H. B.;Robb, M. A.;Replogle, E. S.;Gomperts, R.;Andres, J. L.;Raghavachari, K.;Binkley, J. S.;Gonzalez, C.;Martin, R. L.;Fox, D. J.;Defrees, D. J.;Baker, J.;Srewart, J. J. P.;Pople, J. A.
  32. J. Org. Chem. v.49 Catalan, J. Mo. O.;de Paz, J. L. G.;Yanez, M.
  33. A Pictorial Approach to Molecular Structure and Reactivity Hout, Jr., R. F.;Pietro, W. J.;Hehre, W. J.
  34. Gazz. Chim. Ital. v.97 Arcamonen, F.;Orezzzi, P. G.;Barbieri, W.;Nicollela, V.;Penco, S.