Binding Site of Spermine at Poly$[d(A-T)_2]$ and Poly$[d(G-C)_2]$

Poly$[d(A-T)_2]$, Poly$[d(G-C)_2]$와 스퍼민의 결합 형태에 관한 연구

  • Yun, Byeong Hwa (Department of Chemistry, College of Science, Yeungnam University) ;
  • Jeon, Sun Hee (Department of Chemistry, College of Science, Yeungnam University) ;
  • Song, Young Dae (Department of Chemistry, College of Science, Yeungnam University) ;
  • Cho, Tae Sub (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kim, Seog K. (Department of Chemistry, College of Science, Yeungnam University)
  • 윤병화 (영남대학교 이과대학 화학과) ;
  • 전선희 (영남대학교 이과대학 화학과) ;
  • 송영대 (영남대학교 이과대학 화학과) ;
  • 조태섭 (영남대학교 이과대학 화학과) ;
  • 김석규 (영남대학교 이과대학 화학과)
  • Published : 19981000

Abstract

When the spermine, which is one of the polyamines containing cation in vivo, binds to DNA, it can increase the stability of DNA. At the same time, it can cause B-form to Z-form transformations of DNA. However, because we cannot determine the binding geometry of the spermine to DNA by using spectroscopic methods, nobody can show the accurate binding mechanism of a DNA-spermine complex. Thus, we used DAPI as a spectroscopic probe of spermine, which binding geometry was well known. At the result of base selective binding geometry of spermine to synthetic DNA, the concentration of spermine gets higher, it grows the hydrophobic environment of DAPI which bound the minor groove of adenine-thymine base pair. Simultaneously, spermine seems to bridge the backbones around the minor groove of $poly[d(A-T)_2]$. So that, the intensity of fluorescence spectrum of that shows sudden increasement. In guanine-cytocine base pair, $poly[d(G-C)_2]$, we can suppose that spermine bind to the major groove of that, shoving out the DAPI which is partially intercalated between the base pocket across the major groove of it. In both cases, spermine doesn't show the base selectivity against to DNA.

Keywords

References

  1. Nucleic Acids Res. v.11 Mark, K. A.;Ruben, G. C.
  2. J. Mol. Biol. v.144 Widom, J.;Baldwin, R. L.
  3. Cancer Res. v.48 Pegg, A. E.
  4. J. Mol. Biol. v.121 Chattoraj, D. K.;Gosule, L. C.;Schellman, J. A.
  5. Biochem. Int. v.18 Majumder, K.;Brahmachari, S. K.
  6. Nucleic Acids Res. v.9 Ivanov, V. I.;Minyat, E. E.
  7. Ann. Rev. Phys. Chem. v.38 Jovin, T. M.;Soumpasis, D. M.;McIntosh, L. P.
  8. J. Inorg. Biochem. v.64 Amoochoa, P.;Gonzalez, V. M.;Perez, J. M.;Masaguer, J. R.;Alonso, C.;Navarroranninger, C.
  9. J. Am. Chem. Soc. v.115 no.9 Kim, S. K.;Eriksson, S.;Kubista, M.;Norden, B.
  10. Molecular Basis of Specificity in Nucleic Acid-Drug Interactions Norden, B.;Kim, S. K.;Kubista, M.;Lyng, R.;Akerman, B.
  11. Nucleic Acids Research v.18 Feuerstein, B. G.;Pattabiraman, N.;Marton L. J.
  12. Biochem. biophys. ACTA v.909 Marguet, R.;Wyart, A.;Houssier, C.
  13. Photochem. Photobiol. v.50 Kim, S. K.;Brenner, C. H.;Soh, B. J.;Geacintov, N. E.
  14. J. Am. Chem. Soc. v.111 Wilson, W. D.;Tanious, F. A.;Barton, H. J.;Strekowski, L.;Boylin, D. W.
  15. FEBS v.278 Rao, M. V. R.;Atreyi, M.;Shashi, S.
  16. Arch. Biochem. Biophy. v.325 Yuki, M.;Grukhin, V.;Lee, C. H.;Haworth, I. S.
  17. J. Biomol. Struct. Dyn. v.10 Haworth, I. S.;Roger, A.;Richards, W. G.
  18. J. Mol. Biol. v.67 Pohl, F. M.;Jovin, T. M.
  19. Nucleic Acids Res. v.6 Kapuscinski, J.;Yanagi, K.
  20. Nucleic Acids Res. v.18 Burt, G. F.;Nagarajan, P.;Laurence, F. M.
  21. Dev. Brain Res. v.50 Brown, R. N.;Hitchcook, P. F.
  22. Biochemistry v.32 Eriksson, S.;Kim, S. K.;Kubista, M.;Norden, B.
  23. J. Mol. Biol. v.121 Gosule, L. C.;Schellman, J. A.
  24. Biochemistry v.33 Bancroft, D.;Williams, L. D.;Rich, A.;Egli, M.
  25. Bichem. J. v.234 Pegg, A. E.
  26. Annu. Rev. Biochem. v.53 Tabor, C. W.;Tabor, H.
  27. Proc. Natl. Acad. Sci. U.S.A. v.78 Behe, M.;Felsenfeld, G.
  28. Biochemistry v.18 Wilson, R. W.;Bloomfield, V. A.
  29. J. Org. Chem. v.62 Rajeev, K. G.;Sanjayan, G. J.;Ganesh, K. N.