REMARK ON GENERALIZED k-QUASIHYPONORMAL OPERATORS

  • Ko, Eun-Gil (Department of Mathematics, Ewha Womans University)
  • Published : 1998.11.01

Abstract

An operator $T{\in} {{\mathcal L}(H)}$ is generalized k-quasihyponormal if there exist a constant M>0 such that $T^{\ast k}[M^2(T-z)^{\ast}(T-z)-(T-z)(T-z)^{\ast}]T^k{\geq}0$ for some integer $k{\geq}0$ and all $Z{\in} {\mathbf C}$. In this paper, we show that it T is a generalized k-quasihyponormal operator with the property $0{\not\in}{\sigma}(T)$, then T is subscalar of order 2. As a corollary, we get that such a T has a nontrivial invariant subspace if its spectrum has interior in C.