WEAKLY LAGRANGIAN EMBEDDING AND PRODUCT MANIFOLDS

  • Byun, Yang-Hyun (Department of Mathematics, Hanyang University) ;
  • Yi, Seung-Hun (Liberal Arts and Science (Mathematics), Youngdong University)
  • Published : 1998.11.01

Abstract

We investigate when the product of two smooth manifolds admits a weakly Lagrangian embedding. Prove that, if $M^m$ and $N^n$ are smooth manifolds such that M admits a weakly Lagrangian embedding into ${\mathbb}C^m$ whose normal bundle has a nowhere vanishing section and N admits a weakly Lagrangian immersion into ${\mathbb}C^n$, then $M \times N$ admits a weakly Lagrangian embedding into ${\mathbb}C^{m+n}$. As a corollary, we obtain that $S^m {\times} S^n$ admits a weakly Lagrangian embedding into ${\mathbb}C^{m+n}$ if n=1,3. We investigate the problem of whether $S^m{\times}S^n$ in general admits a weakly Lagrangian embedding into ${\mathbb} C^{m+n}$.