Comparison of the Chemical Compositions of Korean and Chinese Safflower (Carthamus tinctorius L.) Seed

Jun-Han Kim, Don-Yun Kwak, Myung-Sook Choi* and Kwang-Deog Moon

Department of Food Science and Technology, Kyungpook National University
*Department of Food Science and Nutrition, Kyungpook National University

Abstract

The chemical compositions of korean and chinese safflower (Carthamus tinctorius L.) seed were compared in this study. The proximate compositions were 0.73 and 0.05% of moisture, 19.74 and 18.82% of crude protein, 15.47 and 14.61% of crude fat, 3.78 and 3.87% of crude ash, 14.53 and 10.46% of crude fiber, 46.49 and 52.23% of N-free extracts in the non-roasted safflower seed (NRS) and roasted safflower seed (RS), respectively. Crude fat contents in non-roasted chinese safflower seed (NCRS) and roasted chinese safflower seed (RCS) were 33.30 and 31.22%, which were higher than those of NRS and RS. Unsaturated fatty acid in NRS was 83.2% and 90.9% in NCRS. Linoleic acid was the most predominant fatty acid in NRS (74.0%) and NCRS (74.2%). Sucrose (216.5 mg/100 g) and raffinose (117.5 mg/100 g) were major free sugars in NRS, but sucrose, glucose, fructose and raffinose were in NCRS. Glutamic acid, aspartic acid and arginine were major in total amino acids. 24 kinds of free amino acid were detected in NRS and 11 kinds in RS. Total essential amino acid in NRS (28.0 µg/100 g) was higher than that in NCRS (9.2 µg/100 g). The organic acids in safflower seed were composed of formic acid, succinic acid, malic acid, oxalic acid and fumaric acid. The content of vitamin E (α-tocopherol) in NRS and NCRS were 10.5 mg/100 g. 6.2 mg/100 g, NCRS and RCS were 12.8 mg/100 g, 9.4 mg/100 g, respectively. Total carotenoid content in NCRS was 452.0 µg/100 g and it was higher than in NRS. The major minerals of safflower seed were K, P, Ca, Mg.

Key words : Korean and Chinese Safflower seed, chemical components

서 론

홍화(Safflower)는 국화과(Compositae)에 속하는 일 년 sinh 초목으로 원산지는 아프리카, 터키, 중동 등지에서 재배되기 도 하며 학명은 Carthamus tinctorius L.이다. 홍화는 줄기의 길이가 1 m정도이고, 꽃은 7-8월에 피며 모양 이 둥근형 같다고. 또한 보면 빛이 푸른 황색으로 길 이 2.5 cm, 지름 2.5-4 cm이다. 꽃은 수용성의 황색 색소 (safflower yellow)와 불용성인 적색색소 (carthamin)가 함유되어 있어 열로 사용할 수 있다. 홍화는 한국, 일본, 중국 등지에서는 약용을 주목적으로 재배하여 왔으며, 20세기부터는 미국, 인도 등지에서는 식용유 생산용으로 재배되고 있는 자원작물이기도 하다. 홍화의 약용성분은 Carthamin (C₃₃H₄₃O₁₂)인데, 반면의 처방 음료로는 홍화채, 황황통정탕 등이 있으며, 꽃은 혈소판 응고를 억제하고 출혈시간 을 나타시키는 작용이 있을 뿐만 아니라, 혈장 콜레스테롤과 콜레스테롤 저하작용도 있어 여성들의 통 경약이나 여험을 푸는 약제로 한방에서 널리 사용해 왔다. 홍화종심에는 지방유가 다량 함유되어 있는데, 특히 linoleic acid의 함량이 높아 혈청 콜레스테롤 저하시작용을 나타낸다고 보고되었다. 또한 홍화기름 을 이용하여 신용을 깔끔한 모습을 나타내고 보고되었다. 또한 홍화기름 을 이용하여 신용을 깔끔한 모습을 나타내고 보고되었다. 현대 국내에서 연구된 홍화에 대한 연구 보고들도

Corresponding author : Kwang-Deog Moon, Dept. of Food Science and Technology, Kyungpook National University 1370, SanKyuk, Taegu 702-701, Korea

912
한국산과 중국산 홍차중실의 화학적 성분 비교

은 황화수질이 endotoxin에 의한 백식 혈관증에 미치는 영향의, 판상동맥혈중에 홍차가 미치는 영향에 대한 조직학적 관찰(1), 桂仁, 홍차가 잦신에 미치는 영향(2), 홍차유의 균형수분율가 성장기 화의 구리 및 아연의 이용에 미치는 영향(3), 한국산 홍차의 재배기술 및 유용성분에 관한 연구(4) 등이 있으나, 한국산과 중국산 홍차중실의 일반성분 및 유용성분을 비교・검토한 연구보고는 드물다. 따라서, 본 연구에서는 한국산과 중국산 홍차중실의 일반성분과 유용성분을 분석・비교하였고 또한, 복용처리에 따른 홍차중실의 화학성분을 비교・검토하였다.

제료 및 방법

재료

한국산 홍차중실은 1997년도 경북 의성군 소재 우리농인 영농조합에서 제조, 생산된 시료를 사용하였나. 수확된 홍차중실은 정밀・선별・건조한 후 분쇄한 시료와 160~180℃의 온도에 20분간 복용 처리한 후 분쇄한 복용시료를 사용하였고, 중국산 홍차중실은 대구 양주시장에서 구입한 것을 상기와 같은 방법으로 처리하여 시료로 사용하였다.

일반성분 분석

홍차중실의 수분, 조단백질, 조지방, 조정분, 조성유 등 일반성분은 AOAC법(11)에 따라 평가하였다. 즉, 수분은 105℃상압가열검으로 조단백질은 Kjedahl법으로, 조지방은 Soxhlet 추출법으로, 조정분은 550℃에서 회화하여 구하였고, 조성유는 Henneberg-Stohmann법을 개량한 AOAC법(13)에 따라 구하였고, 가용성 무질소분은 100에서 수분, 조단백질, 조지방, 조정분의 값을 제한 값으로 하였다.

지방산 조성분석

지방산은 Yesahajhu 등의 방법(14)에 따라 분석하였다. 먼저 시료 10g를 n-hexane 100 mL로 48시간 진탕한 후 Whatman No. 2 여과지로 여과하고, 40℃ 감탕농축하여 n-hexane을 완전히 제거한 후, 기름 0.1g을 BF3/Methanol로 지방산 methyl ester를 제조하여 gas chromatography(GC)로 분석하였다. GC는 Varian series 3400 CX를 사용하였으며,カラム(DB-FBPAP(30m × 0.253 mm i.d., acid modified polyethylene glycol)을,カラム온도는 150℃(1min)→5℃/min→210℃(5min)→2℃/min→240℃(18min)으로, 검출기는 FID(Flame Ionized Detector)을 사용하였다.

유리당 조성분석

유리당의 분석은 Wilson과 Work의 방법(15)에 준하여 diethyl ether로 탈지한 시료 20g에 70% ethanol 200 mL를 가하여 80℃ water bath에서 2시간 환원내각 추출하였다. 추출액을 Whatman No. 2로 여과하고 그 여액을 40℃에서 10mm gauge membrane filter에 걸쳐서 20 mL에 정량하였다. 이 액을 처리된カラム에 통과시키며 세로 제거, 여과한 후 Sepak C18(Waters Co.)에 통과시킨 용량을 0.45 μm membrane filter에 통과시켜 HPLC(high performance liquid chromatography)로 분석하였다. HPLC는 Waters Model 510(Water Co, New York, U.S. A)을 사용하였고,カラム은 Sugar-PAK1을, 이동상은 H2O(deionized)로, 검출기는 Waters Associates Differential Refractometer R1 401을 사용하였다.

아미노산의 조성

총 아미노산(Total amino acids)은 시료 1g을 ampule에 취하여 6N HCl로 120℃, 18시간 분해시키고 염산을 제거한 다음 loading buffer(0.2 N sodium citrate buffer, pH 2.2)용액으로 10 mL 정량하여 Whatman No. 2 여과지로 여과한 후 혈청, sepaC18 처리한 후 0.45 μm membrane filter로 세로하여 amino acid analyzer로 분석하였다. Amino acid analyzer는 Pharmacia Biochrom-20을 사용하였고,カラム은 sodium high resolution peak-el, flow rate는 20 mL/hr, ninhydrin 25 mL/hr로, buffer change는 pH 3.20~6.45로.カラム온도는 48~89℃로 회화하여 분석하였다.

유리 아미노산(Free amino acids)은 최상 방법(16)에 따라 탈지시료 일정량에 75% ethanol로 추출 여과한 여액을 45℃에서 감탕농축하여 레반을 제거하였다. 이를 증류수로 20 mL 되게 정량한 후 단백질, TCA, ethylether를 세로한 후 증류수로 10 mL 정량시키고 이를 Amberlite IR 120(H+) column에 통과시켜 amino acid을 흡착시킨 후 2N-NH3용액으로 용출하였다. 용출액은 감탕농축하여 loading buffer solution(0.2 N sodium citrate buffer, pH 2.2)로 용해하여 total volume 10 mL 되게 하여, sepaC18 처리한 후 membrane filter(pore size 0.45 μm)로 세로하여 amino acid analyzer로 분석하였다. Amino acid analyzer는 Pharmacia Biochrom-20을 사용하였고,カラム은 lithium high resolution peak-el, flow rate는 20 mL/hr, ninhydrin 25 mL/hr로. Buffer change는 pH 2.8~3.55로,カラム온도는 35~80℃로 하여 분석하였다.

유기산 분석

유기산은 Wilson과 Work의 방법(15)에 따라 시료
비타민 B₃은 보건복지부의 식품분석법에 따라 시료 1g에 10% 살균화학요법액 5ml을 넣고 균질화한 후 10% 살균화학요법액으로 10ml로 정정한 후 9,000 rpm에서 10분간 원심분리하여 상징액 200 µl를 취하여 4M 조산나트륨용액에 30 µl를 가하여 pH 4.5~4.7로 하고, 25°C에 1시간 반응한 후 HPLC 분석하였다. 이 때의 검출은 μ-Bondapak C₁₈(3.9×300 mm), 이동상은 0.1 M 인산나트륨용액, 검출기는 형광감지기(λ₅₂₅nm)를 사용하였다.

비타민 B₃은 보건복지부의 식품분석법에 따라 탈지 시료 일정량에 물을 가하여 균질화하고 80°C 수용액으로 20분간 추출, 발려한 후 추출액 1ml 중 비타민B₂ 0.05-0.5 µg/ml 를 가하여 1시간로 하여 HPLC로 분석하였다. 이 때의 검출은 μ-Bondapak C₁₈(3.9×300 mm), 이동상은 MeOH : 10 mM NaH₂PO₄용액(pH 5.5) (35:65), 검출기는 형광감지기(λ₅₄₅nm)을 사용하였다.

비타민 E(Tocopherol)은 보건복지부의 식품분석법에 따라 토코페롤로서 약 0.2 mg를 함유하는 시료 일정량을 젖화프레스코에 녹고 에탄올 30 ml, 10% pyrogallol· ethanol용액 1 ml와 수산화칼륨용액 3 ml를 가하여 비등수족 중에서 30분간 환류하고하여 비누화한 후 실온으로 방비하였다.

이미 진공시 같은 방법으로 약 30 ml를 가하고 갈색분리액에 용해물 10 ml, 석유에테르 30 ml를 가하여 혼합, 방치하여 석유에테르층을 분리하고 다시 물층은 석유에테르 30 ml로 2회 추출하여 석유에테르액을 함유하여 패놀프탈때 실이 분석을 위해 한계 없을 때까지 채고 무수확산나트륨용액을 분려 후 석유에테르층을 분리하였다. 이 석유에테르 추출액을 40°C에서 갈색간조한 핵산 1ml로 녹여서 HPLC로 분석하였다. 이때 분석조건은 검출은 μ-Bondapak C₁₈(3.9×300 mm), 이동상은 EtOH : H₂O (95:5), 검출기는 형광감지기(λ₅₂₅nm)를 사용하였다.

카로테인은 AOAC법에 따라 시료 0.5 g에 n- hexane : Acetone(6:4, v/v) 용액 30 ml을 가하여 추출 후 총여한 후 추출액 10ml에 carotenoid을 분리하기 위하여 MeOH 10 ml을 가하여 잔사가 무색이 될 때까지 acetone으로 세척하고 n-hexane : Acetone(6:4, v/v) 용액으로 100 ml로 정정한 후 증류수로 200 ml 정정하여 n-hexane, Acetone, MeOH용액을 분리하여 436 nm에서 흡광도를 측정하여 정량하였다.

무기질
무기질은 식품공정의 방법에 따라 분석하였다. 즉 시료를 550°C에서 회화, 발려한 후 증류수로 적시고 HCl : H₂O (1:1) 용액 10 ml로 가하여 용해시켰다. 이를 water bath에서 중발간격까지 가온 HCl : H₂O (1:3) 용액 10 ml로 가하여 여과한 후 증류수로 100 ml 정정하여 분석용 용액으로 하였다. Ca, P 및 Pt는 ICP(ICP-AES, Jobin-Yvon38, France)로, A₁₇₅₋₆₀, A₁₂₅₋₄₀, A₃₂₁₋₆₀, Ca₃₋₁₀, A₂₉₀₋₁₀, A₁₂₇₋₁₀, A₃₂₁₋₀, A₁₂₇₋₁₀, A₃₂₁₋₁₀에서 각각 분석하였다. Ca, Na, Fe, Mn, k, Cu 및 Mg 등은 AA(Perkin Elmer 303, Perkin Elmer Co., USA)로 A₂₅₋₁₀, A₂₅₋₁₀, A₂₅₋₁₀, A₂₅₋₁₀, A₂₅₋₁₀, A₂₅₋₁₀에서 각각 분석하였다.

결과 및 고찰
일반성분
홍화장식의 수분함량은 한국산 홍화장식 8.73%, 중국산 홍화장식 5.85%, 한국산 뿌어홍화장식 0.05%, 중국산 뿌어홍화장식 0.06%이었으며 나머지 일반성분함량은 전물량(dry basis) 기준으로 Table에 나타내었다.

한국산 홍화장식의 일반성분은 조반복 3.78%, 조단백질 19.74%, 조지방 15.47%, 조성유 14.53%, 무질소 46.49%를 나타내었다. 그 중 조지방함량은 박 등(1)의 한국산 홍화장식의 재배기술 및 유통성분에 관한 연구에서의 34.8%에 결과와는 상당한 차이를 나타내었으며 이러한 결과는 재배조건과 지역적 재배특성의 차이에 의한 것으로 사료되며 또한, 한국산 홍화장식의 조지방함량은 33.30%로서 한국산의 약 1.5배 정도의 높은 함량 자료를 나타내었다. 그러나, 일반성분(조단백질, 조반복, 조성유, 무질소등)의 함량에 있어서는 한국산과 중국산과 큰 차이는 나타나지 않았다. 또한, 본모니터링 후에 성분품질의 함량에서는 사소 감소하는 경향을 보였으며 특히 조섬유 함량의 감소에 따른 질소합합물의 상대적 증가 현상을 보였다.

지방산 조성
홍화장식의 지방산 조성 분석결과는 Table 2와 같이 홍화장식의 주된 지방산으로는 포화지방산인 palmitic
한국산과 중국산 홍화종실의 화학적 성분 비교

Table 1. Proximate compositions of Safflower seed

(Unit: %, dry basis)

<table>
<thead>
<tr>
<th>Samples</th>
<th>Crude protein</th>
<th>Crude fat</th>
<th>Crude ash</th>
<th>Crude fiber</th>
<th>N-free extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRS</td>
<td>19.74</td>
<td>15.47</td>
<td>3.78</td>
<td>14.53</td>
<td>46.49</td>
</tr>
<tr>
<td>RS</td>
<td>18.82</td>
<td>14.61</td>
<td>3.87</td>
<td>10.46</td>
<td>52.23</td>
</tr>
<tr>
<td>NRCS</td>
<td>12.64</td>
<td>33.30</td>
<td>2.07</td>
<td>15.86</td>
<td>36.13</td>
</tr>
<tr>
<td>RCS</td>
<td>12.13</td>
<td>31.22</td>
<td>2.00</td>
<td>9.60</td>
<td>51.05</td>
</tr>
</tbody>
</table>

1) Samples are NRS: non-roasted korean safflower seed, RS: roasted korean safflower seed, NRCS: non-roasted chinese safflower seed, RCS : roasted chinese safflower seed.
2) Values are mean of 3 replications

유리달 조성

홍화종실의 유리달 조성과 함량을 HPLC로 측정한 결과는 Table 3과 같다. 유리달에는 raffinose, sucrose, glucose, fructose 등이 분리 확인되었다. 그 중 sucrose의 함량이 대부분이었으며, 한국산 홍화종실의 경우는 sucrose 216.5 mg/100 g, raffinose 117.5 mg/100 g이 함유되어 있었다. 중국산 홍화종실에는 sucrose 211.8 mg/100 g, glucose 106.0 mg/100 g, fructose 84.3 mg/100 g, raffinose 23.3 mg/100 g이 함유되어 있었다. 복음홍화종실에는 sucrose가 한국산과 중국산에 각각 90.1 mg/100 g, 83.3 mg/100 g이 함유되어 있었으며, raffinose, glucose, fructose 등은 함유하고 있지 않았다. 이것은 복음처리과정에서의 amino-carbonyl 반응과 비효소적 간변에 의한 유리달 함량의 감소와 변화에 의한 것으로 생각된다.20)

아미노산 조성

홍화종실의 총 아미노산을 분석한 결과는 Table 4에서 처럼 홍화종실의 총 아미노산은 한국산 홍화종실에는 모두 18종이 분리되었으나 중국산 홍화종실에는 methionine을 제외한 17종이 분리되었다. Leucine, lysine, valine 등 필수아미노산의 함량은 한국산 홍화종실과 복음홍화종실은 628.8 μg/100 g, 249.4 μg/100 g이 함유되어 있는 반면에 중국산 홍화종실과 복음홍화종실은 784.6 μg/100 g, 530.0 μg/100 g으로 다소 높은 함량을 나타내었고, 복음홍화종실에서는 그 함량이 낮았고, 필수아미노산 중 valine의 함량이 가장 높게 함유

Table 2. Contents of fatty acids in Safflower seed

(Unit: Area%)

<table>
<thead>
<tr>
<th>Fatty acids</th>
<th>Samples1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lauric acid (12:0)</td>
<td>NRS</td>
</tr>
<tr>
<td>Tridecanoic acid (13:0)</td>
<td>RS</td>
</tr>
<tr>
<td>Myristic acid (14:0)</td>
<td>NRCS</td>
</tr>
<tr>
<td>Pentadecanoic acid (15:0)</td>
<td>RCS</td>
</tr>
<tr>
<td>Palmitic acid (16:0)</td>
<td></td>
</tr>
<tr>
<td>Palmitoleic acid (16:1)</td>
<td></td>
</tr>
<tr>
<td>Heptadecanoic acid (17:0)</td>
<td></td>
</tr>
<tr>
<td>Stearic acid (18:0)</td>
<td></td>
</tr>
<tr>
<td>Oleic acid (18:1)</td>
<td></td>
</tr>
<tr>
<td>Linoleic acid (18:2)</td>
<td></td>
</tr>
<tr>
<td>Linolenic acid (18:3)</td>
<td></td>
</tr>
<tr>
<td>Arachidic acid (20:0)</td>
<td></td>
</tr>
<tr>
<td>Eicosanoic acid (20:1)</td>
<td></td>
</tr>
<tr>
<td>Eicosatetraenoic acid (20:4)</td>
<td></td>
</tr>
<tr>
<td>Eicosapentaenoic acid (20:5)</td>
<td></td>
</tr>
<tr>
<td>Behenic acid (22:0)</td>
<td></td>
</tr>
<tr>
<td>Docosadienoic acid (22:2)</td>
<td></td>
</tr>
<tr>
<td>Docosahexaenoic acid (22:6)</td>
<td></td>
</tr>
<tr>
<td>TSFA</td>
<td>16.8</td>
</tr>
<tr>
<td>TUSFA</td>
<td>83.2</td>
</tr>
</tbody>
</table>

1) Samples are same as Table 1.
2) TSFA: total saturated fatty acids, TUSFA: total unsaturated fatty acids, Values are mean of 3 replications.

Table 3. Contents of free-sugars in Safflower seed

(Unit: mg/100 g, dry basis)

<table>
<thead>
<tr>
<th>Sugars</th>
<th>NRS</th>
<th>RS</th>
<th>NRCS</th>
<th>RCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raffinose</td>
<td>117.5²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sucrose</td>
<td>216.5</td>
<td>90.1</td>
<td>211.8</td>
<td>83.3</td>
</tr>
<tr>
<td>Glucose</td>
<td>-</td>
<td>-</td>
<td>106.0</td>
<td></td>
</tr>
<tr>
<td>Fructose</td>
<td>-</td>
<td>-</td>
<td>84.3</td>
<td></td>
</tr>
</tbody>
</table>

1) Samples are same as Table 1.
2) Values are mean of 3 replications.
Table 4. Contents of total-amino acids in Safflower seed
(Unit: mg/100 g, dry basis)

<table>
<thead>
<tr>
<th>Amino acids</th>
<th>Samples (^1)</th>
<th>NRS</th>
<th>RS</th>
<th>NRCS</th>
<th>RCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspartic acid</td>
<td>300.9 (^2)</td>
<td>216.5</td>
<td>283.9</td>
<td>191.5</td>
<td></td>
</tr>
<tr>
<td>Threonine</td>
<td>85.1</td>
<td>59.0</td>
<td>92.6</td>
<td>62.7</td>
<td></td>
</tr>
<tr>
<td>Serine</td>
<td>111.9</td>
<td>74.3</td>
<td>121.7</td>
<td>71.3</td>
<td></td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>596.0</td>
<td>498.8</td>
<td>680.7</td>
<td>478.8</td>
<td></td>
</tr>
<tr>
<td>Proline</td>
<td>29.5</td>
<td>25.6</td>
<td>31.4</td>
<td>21.7</td>
<td></td>
</tr>
<tr>
<td>Glycine</td>
<td>147.3</td>
<td>110.6</td>
<td>186.4</td>
<td>126.3</td>
<td></td>
</tr>
<tr>
<td>Alanine</td>
<td>110.1</td>
<td>84.6</td>
<td>113.4</td>
<td>80.0</td>
<td></td>
</tr>
<tr>
<td>Cystine</td>
<td>47.0</td>
<td>32.1</td>
<td>37.7</td>
<td>28.4</td>
<td></td>
</tr>
<tr>
<td>Valine</td>
<td>157.5</td>
<td>126.9</td>
<td>198.3</td>
<td>135.1</td>
<td></td>
</tr>
<tr>
<td>Methionine</td>
<td>22.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Isoleucine</td>
<td>77.6</td>
<td>66.1</td>
<td>107.2</td>
<td>71.0</td>
<td></td>
</tr>
<tr>
<td>Leucine</td>
<td>147.7</td>
<td>126.2</td>
<td>203.8</td>
<td>135.4</td>
<td></td>
</tr>
<tr>
<td>Tyrosine</td>
<td>11.4</td>
<td>16.8</td>
<td>20.7</td>
<td>14.8</td>
<td></td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>28.5</td>
<td>64.1</td>
<td>104.2</td>
<td>69.1</td>
<td></td>
</tr>
<tr>
<td>Histidine</td>
<td>74.5</td>
<td>56.6</td>
<td>85.7</td>
<td>56.6</td>
<td></td>
</tr>
<tr>
<td>Lysine</td>
<td>110.1</td>
<td>64.5</td>
<td>90.2</td>
<td>61.4</td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>88.2</td>
<td>234.7</td>
<td>282.4</td>
<td>185.0</td>
<td></td>
</tr>
<tr>
<td>Arginine</td>
<td>298.1</td>
<td>1634.1</td>
<td>1952.6</td>
<td>1680.7</td>
<td></td>
</tr>
<tr>
<td>Total amino acids</td>
<td>2286.2</td>
<td>249.4</td>
<td>784.6</td>
<td>530.0</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Samples are same as Table 1.

\(^2\)Values are mean of 3 replications

Table 5. Contents of free-amino acids in Safflower seed
(Unit: mg/100 g, dry basis)

<table>
<thead>
<tr>
<th>Amino acids</th>
<th>Samples (^1)</th>
<th>NRS</th>
<th>RS</th>
<th>NRCS</th>
<th>RCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphoserine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Taurine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phosphoethanolamine</td>
<td>2.7 (^2)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Urea</td>
<td>22.0</td>
<td>7.7</td>
<td>11.0</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>43.3</td>
<td>1.8</td>
<td>15.3</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>Hydroxyproline</td>
<td>-</td>
<td>-</td>
<td>35.6</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Threonine</td>
<td>9.5</td>
<td>-</td>
<td>3.2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Serine</td>
<td>8.8</td>
<td>-</td>
<td>23.8</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>Asparagine</td>
<td>187.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sarcosine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α-aminoisobutyric acid</td>
<td>68.9</td>
<td>-</td>
<td>18.9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Proline</td>
<td>6.4</td>
<td>0.4</td>
<td>2.3</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Glycine</td>
<td>27.7</td>
<td>0.9</td>
<td>6.3</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>Alanine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Citrulline</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α-aminoisobutyric valine</td>
<td>12.6</td>
<td>-</td>
<td>4.9</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Cystine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Methionine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cystathionine</td>
<td>7.3</td>
<td>-</td>
<td>1.9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Isoleucine</td>
<td>4.4</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Leucine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>β-alanine</td>
<td>5.0</td>
<td>0.5</td>
<td>2.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>3.3</td>
<td>0.4</td>
<td>2.1</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>β-aminoisobutyric acid</td>
<td>8.5</td>
<td>-</td>
<td>0.6</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>γ-aminoisobutyric acid</td>
<td>30.3</td>
<td>-</td>
<td>26.8</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>20.3</td>
<td>11.0</td>
<td>17.0</td>
<td>15.7</td>
<td></td>
</tr>
<tr>
<td>DL-Allohydroxylysine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ornithine</td>
<td>5.3</td>
<td>-</td>
<td>2.1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Lysine</td>
<td>10.9</td>
<td>0.4</td>
<td>1.4</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>1-methylhistidine</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Histidine</td>
<td>19.8</td>
<td>0.4</td>
<td>1.8</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3-methylhistidine</td>
<td>0.7</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Anserine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Carnosine</td>
<td>2.7</td>
<td>-</td>
<td>7.4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Arginine</td>
<td>86.3</td>
<td>2.4</td>
<td>4.0</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>Total amino acids</td>
<td>471.0</td>
<td>26.7</td>
<td>185.1</td>
<td>55.9</td>
<td></td>
</tr>
<tr>
<td>Essential amino acids</td>
<td>28.0</td>
<td>2.0</td>
<td>9.2</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Samples are same as Table 1.

\(^2\)Values are mean of 3 replications

이렇게 간별로도 따르게 나타난다고 보고 \(^2\)가 있다.

유기산 조성

화합물의 유기산 조성과 함량은 Table 6에 나타낸
Table 6. Contents of organic acids in Safflower seed
(Unit: mg/100g, dry basis)

<table>
<thead>
<tr>
<th>Organic acids</th>
<th>NRS</th>
<th>RS</th>
<th>NRCS</th>
<th>RCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxalic acid</td>
<td>40.19</td>
<td>36.92</td>
<td>27.45</td>
<td>36.68</td>
</tr>
<tr>
<td>Tartaric acid</td>
<td>16.35</td>
<td>-</td>
<td>8.88</td>
<td>-</td>
</tr>
<tr>
<td>Malic acid</td>
<td>54.26</td>
<td>48.79</td>
<td>50.26</td>
<td>48.99</td>
</tr>
<tr>
<td>Succinic acid</td>
<td>128.19</td>
<td>115.24</td>
<td>75.44</td>
<td>80.31</td>
</tr>
<tr>
<td>Formic acid</td>
<td>297.05</td>
<td>117.16</td>
<td>332.53</td>
<td>64.65</td>
</tr>
<tr>
<td>Fumaric acid</td>
<td>0.10</td>
<td>2.32</td>
<td>11.55</td>
<td>9.30</td>
</tr>
<tr>
<td>Total</td>
<td>535.80</td>
<td>320.44</td>
<td>506.11</td>
<td>239.92</td>
</tr>
</tbody>
</table>

1) Samples are same as Table 1.
2) Values are mean of 3 replications

비와 같이 홍화중심의 유기산으로는 oxalic acid, tartaric acid, malic acid, succinic acid, formic acid, fumaric acid 등이 분리 확인되었다. 그 중 주요 유기산으로는 formic acid, succinic acid로서 전체 유기산 함량의 60.4%에서 80.6%로 높게 함유되고 있었다. 총 유기산의 함량은 한국산 홍화중심과 북음홍화중심의 535.80 mg/100g, 320.44 mg/100g로 한국산 홍화중심과 북음홍화중심은 506.11 mg/100g, 239.92 mg/100g과 거의 유사한 함량을 나타내었다. 또한, 북음처리에 의한 유기산 함량이 감소하는 경향을 보였다.

비타민류 및 카로테노이드

홍화중심의 비타민류와 카로테노이드함량을 분석한 결과는 Table 7과 같다. α-Tocopherol함량에 있어서 한국산 홍화중심과 북음홍화중심은 10.05 mg/100g, 6.2 mg/100g으로, 중국산 홍화중심과 북음홍화중심은 12.8 mg/100g, 9.4 mg/100g으로 대체적으로 한국산 홍화중심에 α-Tocopherol을 많이 함유하고 있었고 북음홍화중심에는 다소 낮은 함량을 나타내었다. 특히 홍화중심에는 식품의 함성재료로서 유용한 α-tocopherol의 함량이 많은 것으로 볼 때 식물체로부터의 현업산화제를 얻을 수 있는 중요한 자연식물로의 중추한 가치를 가지고 있다고 생각된다. vitamin B는 한국산 홍화중심과 북음홍화중심은 48.2 μg/100g, 43.2 μg/100g로, 중국산 홍화중심과 북음홍화중심의 24.9 μg/100g, 18.3 μg/100g에 비하여 높은 함량을 나타내었다. 또한 vitamin B는 한국산 홍화중심과 북음홍화중심은 130.7 μg/100g, 81.4 μg/100g로 한국산 홍화중심과 북음홍화중심의 90.0 μg/100g, 82.6 μg/100g에 비하여 높은 함량을 나타내었고, 북음홍화중심에는 vitamin B과 함량이 다소 낮게 나타났는데 이것은 북음과정에서의 vitamin B 함량의 손실을 가져온 것으로 생각된다. 또한 홍화중심의 적혈소 동소성분인 carotenoid 함량은 한국산 홍화중심과 북음홍화중심은 215.0 μg/100g, 172.6 μg/100g으로 중국산 홍화중심과 북음홍화중심의 452.0 μg/100g, 299.3 μg/100g과 비교했을 때 낮은 수준으로 함유되어 있었다.

무기질 함량

Table 8은 홍화중심의 무기질 함량을 ICP와 AA로 분석한 결과이다. 홍화중심의 무기질로는 Ca, P, Pt, Fe, Mn, Zn, Mg, K, Na, Cu, Cr 등이 함유되어 있었고, 그 중 K, P, Ca, Mg 등이 주된 무기질로서 높은 비중을 차지하고 있었다. K의 경우는 한국산 홍화중심과 북음홍화중심은 565 mg/100g, 442 mg/100g으로 중국산 홍화중심과 북음홍화중심의 365 mg/100g, 327 mg/100g보다 낮은 함량을 보였으며, 북음홍화중심의 함량이 다소 낮게 나타났다. 또한 한국산 홍화중심과 북음홍화중심의 Ca함량은 208 mg/100g, 104 mg/100g으로 중국산 홍화중심과 북음홍화중심의 276 mg/100g, 193 mg/100g과 비교해 낮은 함량을 나타내었다. P함량은 한국산 홍

Table 7. Contents of vitamins and carotenoid in safflower seed

<table>
<thead>
<tr>
<th>Organic acids</th>
<th>NRS</th>
<th>RS</th>
<th>NRCS</th>
<th>RCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Tocopherol</td>
<td>10.5</td>
<td>6.2</td>
<td>12.8</td>
<td>9.4</td>
</tr>
<tr>
<td>Vitamin B</td>
<td>130.7</td>
<td>81.4</td>
<td>90.0</td>
<td>82.6</td>
</tr>
<tr>
<td>Vitamin B</td>
<td>48.2</td>
<td>43.2</td>
<td>24.9</td>
<td>18.3</td>
</tr>
<tr>
<td>Carotenoid</td>
<td>215.0</td>
<td>172.6</td>
<td>452.0</td>
<td>299.3</td>
</tr>
</tbody>
</table>

1) Samples are same as Table 1.
2) Values are mean of 3 replications

Table 8. Contents of minerals in Safflower seed
(Unit: mg/100 g, dry basis)

<table>
<thead>
<tr>
<th>Minerals</th>
<th>NRS</th>
<th>RS</th>
<th>NRCS</th>
<th>RCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>208</td>
<td>104</td>
<td>276</td>
<td>193</td>
</tr>
<tr>
<td>P</td>
<td>576</td>
<td>272</td>
<td>332</td>
<td>265</td>
</tr>
<tr>
<td>Pt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fe</td>
<td>6.48</td>
<td>4.86</td>
<td>6.19</td>
<td>4.58</td>
</tr>
<tr>
<td>Mn</td>
<td>1.68</td>
<td>1.51</td>
<td>1.07</td>
<td>0.99</td>
</tr>
<tr>
<td>Zn</td>
<td>5.12</td>
<td>4.46</td>
<td>5.07</td>
<td>4.53</td>
</tr>
<tr>
<td>Mg</td>
<td>17.20</td>
<td>14.3</td>
<td>15.5</td>
<td>13.1</td>
</tr>
<tr>
<td>K</td>
<td>565</td>
<td>442</td>
<td>365</td>
<td>327</td>
</tr>
<tr>
<td>Na</td>
<td>8.06</td>
<td>6.34</td>
<td>7.41</td>
<td>7.60</td>
</tr>
<tr>
<td>Cu</td>
<td>1.63</td>
<td>1.43</td>
<td>1.40</td>
<td>1.28</td>
</tr>
</tbody>
</table>

1) Samples are same as Table 1.
2) Values are mean of 3 replications
화종종과 복목형화종들의 567 mg/100 g, 272 mg/100 g으로, 중국산 화종종과 복목형화종의 332 mg/100 g, 265 mg/100 g과 밀접한 관계를 나타내지 않았다. 또한 Cu, Zn, Mg와 Fe의 함량은 한국산과 중국산의 경우 거의 유사한 함량을 나타내었다.

요 약

한국산 복목처리 하지 않은 화종종과 복목형화종실은 수분 8.73%, 0.05%, 조지방 15.47%, 14.61%, 조해분 3.78%, 3.87%, 조단백질 19.74%, 18.82%, 조성유 14.53%, 10.46%, 무질소분 46.49%, 52.23%로 분석되었고, 그 중 조지방 함량은 중국산 화종종실과 복목형화종실의 33.30%, 31.22%와는 상당한 차이를 보였고, 이것은 원료의 구분방법의 차이로 생각된다. 한국산 화종종실과 복목형화종실에는 linoleic acid가 74.0%, 69.0%로 높은 함량을 나타내어 화종종실의 증가 지방산임을 확인할 수 있었다. 화종종실의 유리당은 sucrose, raffinose, glucose, fructose 등이 분리되었고 그 중 sucrose의 함량이 대부분을 차지하였다. 또한 화종종실의 주된 콜아미노산은 glutamic acid, aspartic acid 및 argine등으로 확인되었다. 화종종실의 유리아미노산은 한국산 화종종실과 복목형화종실은 24종, 11종, 중국산 화종종실과 복목형화종실은 24종, 15종으로 분리되었고, lysine, isoleucine 등 필수아미노산의 함량은 한국산 화종종실이 높게 함유하였다. 화종종실의 주된 유기산으로는 formic acid, succinic acid, malic acid, oxalic acid, furmaric acid 등이 분리 확인되었고, 화종종실의 비타민류로 vitamin E(tocopherol), vitamin B₁, vitamin B₂ 등이 분석되었고, 그 중 α-tocopherol 함량은 한국산 화종종실과 복목형화종실은 10.5 mg/100 g, 6.2 mg/100 g이고, 중국산 화종종실과 복목형화종실은 12.8 mg/100 g, 9.4 mg/100 g으로 다각 함유하고 있어 식물성 천연항산화제로서의 가치를 확인하였다. 화종종실의 carotenoid 함량은 중국산 화종종실이 452.0 μg/100 g로 높은 함량을 나타내었다. 화종종실의 주된 무기질로는 K, P, Ca, Mg 등이 확인되었다.

문헌