DOI QR코드

DOI QR Code

PIV Measurements of Flow Downstream of Polyurethane Heart Valve Prosthesis for Artificial Heart : Steady Flow Experiment

PIV를 이용한 인공심장용 폴리우레탄 인공판막 하류의 유동 측정 : 정상유동실험

Kim, Jung Gyeong;Seong, Jae Yong;Jang, Jun Geun;Yu, Jeong Yeol;Min, Byeong Gu
김중경;성재용;장준근;유정열;민병구

  • Received : 0
  • Accepted : 0
  • Published : 0

Abstract

Hemodynamic performance of a polyurethane heart valve prosthesis was evaluated in comparison with that of Bjork-Shiley Monostrut mechanical valve in steady flow representing the systolic peak flow phase. Pressure losses through the valves were obtained from the streamwise pressure distributions downstream of the valves. Unsteady and turbulent flow field distal to the heart valve prostheses were investigated using M (Particle Image Velocimetry) which can measure the full-field velocity instantaneously and noninvasively. BY examining the velocity and Reynolds shear stress fields downstream of the polyurethane heart valve, it is known that there is a large recirculation region near the valve and high shear stress regions exist at the interface between strong axial jet flows along the wall and vortical flows in the central area. The possibilities of vascular complications, such as the thrombus formation and red blood cell damage, could be predicted from the overall view of the velocity and stress fields.

Keywords

Polyurethane Heart Valve Prosthesis;PIV;Hemolysis;Thrombus

References

  1. Biophys. J. v.12 no.3 Red Blood Cell Damage by Shear Stress Leverett, L. B.;Hellums, J. D.;Alfrey, C. P.;Lynch, E. C.
  2. J. Biomed. Mater. Res. v.8 no.2 Adhesion of Red Cells to Foreign Surfaces in the Presence of Flow Mohandas, N.;Hochmuth, R. M.;Spaeth, E. E.
  3. Artif. Organs. v.21 no.8 The Importance of Pulsatile and Nonpulsatile Flow in the Design of Blood Pumps Allen, G. S.;Murray, K. D.;Olsen, D. B.
  4. 대한공학회지 v.17 no.1 정상유동에서 유동형 단엽폴리머 인공판막의 수력학적 성능평가 김준우;박복춘;백병준;민병구
  5. Scand. J. Thorac. Cardiovasc. Surg. v.13 no.3 Comparison Between the In Vitro Flow Dynamics of the Standard and the Convexo-Concave Bjork-Shiley Tilting Disc Valve Prostheses Aberg, B.;Henze, A.
  6. Proceedings of the 10th International Conference on mechanics in Medicine and Biology In-Vitro Measurements of Fluid Dynamic Characteristics of Polyurethane Heart Valve Prostheses Using Particle Image Velocimetry Kim, J. K.;Sung, J.;Chang, J. K.;Min, B. G.;Yoo, J. Y.
  7. ASAIO Trans. v.36 no.3 Estimation of Reynolds Stresses Within the Penn State Left Ventricular Assist Device Baldwin, J. T.;Deusch, S.;Geselowitz, D. B.;Tarbell, J. M.
  8. J. Biomech. Eng. v.115 no.3 Laser Anemometry Measurements of Steady Flow Past Aortic Valve Prostheses Chew, Y. T.;Lim, W. L.;Low, H. T.;Lee, C. N.;Kwa, S. S.
  9. J. Biomech. Eng. v.110 no.4 Model Studies at Mechanical Aortic Heart Valve Prostheses-Part I : Steady-State Flow Fields and pressure Loss Coefficients Knoch, M.;Reul, H.;Kroger, R.;Rau, G.
  10. J. Biomech. v.16 no.10 Laser Anemometry Measurements of Pulsatile Flow Past Aortic Valve Prostheses Chandran, K. B.;Cabell, G. N.;Khalighi, B.;Chen, C. J.
  11. J. Thorac. Cardiovasc. Surg. v.95 no.5 In Vitro Velocity and Turbulence Measurements in the Vicinity of Three New Mechanical Aortic Heart Valve Prostheses:Bjork-Shiley Monostrut, Ommi-Carbon, and Duromedics Yoganathan, A. P.;Sung, H.-W.;Woo, Y.-R.;Jones, M.
  12. Circ. Res. v.41 no.1 Flow-Induced Trauma to Blood Cells Sutera, S. P.
  13. J. Biomech. v.31 no.5 Steady Flow Dynamics of Prosthetic Aortic Heart Valves: A Comparative Evaluation with PIV Techniques Lim, W. L.;Chew, Y. T.;Chew, T. C.;Low, H. T.
  14. ASAIO J. v.42 no.3 Identification of Peak Stresses in Cardiac Prostheses. A Comparison of Two-Dimensional Versus Three-Dimensional Principal Stress Analyses Fontaine, A. A.;Ellis, J. T.;Healy, T. M.;Hopmeyer, J.;Yoganathan, A. P.
  15. Biophys. J. v.15 no.1 Deformation and Fragmentation of Human Red Blood Cells in Turbulent Shear Flow Sutera, S. P.;Mehrjardi, M. H.
  16. Int. J. Artif. Organs v.19 no.12 A New Polymer Valve for Mechanical Circulatory Support Systems Suh, S. W.;Kim, W. G.;Kim, H. C.;Min, B. G.
  17. KSME Int. J. v.7 no.3 In Vitro Hydrodynamic Evaluation of Prosthetic Polymer Heart Valves in Steady Flow Park, B. C.;Cho, B. S.;Baek, B. J.;Kim, C. S.;Min, B. G.
  18. Int. J. Artif. Organs v.12 no.4 Velocity and Shear Stress Distribution Downstream of Mechanical Heart Valves in Pulsatile Flow Giersiepen, M.;Krause, U.;Knott, E.;Reul, H.;Rau, G.
  19. J. Biomech. v.25 no.3 Experimental and Numerical Analyses of the Steady Flow Field Around an Aortic Bjork-Shiley Standard Valve Prosthesis Lei, M.;Steenhoven, A. A.;Campen, D. H.
  20. ASAIO Trans. v.34 no.4 In Vitro Testing of Bioprostheses Reul, H.;Giersiepen, M.;Knott, E.
  21. J. Biomech. Eng. v.119 no.1 Numerical Analysis of Three-Dimensional Bjork-Shiley Valvular Flow in an Aorta Shim, E. B.;Chang, K. S.
  22. J. Biomech. v.31 no.5 Steady Flow Dynamics of Prosthetic Aortic Heart Valves: A Comparative Evaluation with PIV Techniques Willert, C. E.;Chew, Y. T.;Chew, T. C.;Low, H. T.