HARDY-LITTLEWOOD MAXIMAL FUNCTIONS IN ORLICZ SPACES

  • Yoo, Yoon-Jae (Department of mathematics , University of wisconsin)
  • Published : 1999.05.01

Abstract

Let Mf(x) be the Hardy-Littlewood maximal function on $\mathbb{R}^n$. Let $\Phi$ and $\Psi$ be functions satisfying $\Phi$(t) = ${\int^t}_0$a(s)ds and $\Psi(t)$ = ${\int^t}_0$b(s)ds, where a(s) and b(s) are positive continuous such that ${\int^\infty}_0\frac{a(s)}{s}ds$ = $\infty$ and b(s) is quasi-increasing. We show that if there exists a constant $c_1$ so that ${\int^s}_0\frac{a(t)}{t}dt\;c_1b(c_1s)$ for all $s\geq0$, then there exists a constant $c_1$ such that(0.1) $\int_{\mathbb{R^{n}}$ $\Phi(Mf(x))dx\;\leq\;c_2$ $\int_\mathbb{R^{n}}$$\Psi(c_2\midf(x)\mid)dx$ for all $f\epsilonL^1(R^n_$. Conversely, if there exists a constant $c_2$ satisfying the condition (0.1), then there exists a constant $c_1$ so that ${\int^s}_\delta\frac{a(t)}{t}dt=;\leq\;c_1b(c_1s$ for all $\delta$ > 0 and $s\geq\delta$.

References

  1. Studia Math v.110 no.2 Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator S. Bloom;R. Kerman
  2. Proc. Amer. Math. Soc. v.124 On maximal functions in Orlicz spaces Hiro-O Kita
  3. World Scientific Weighted inequalities in Lorentz and Orlicz spaces V. Kokilashivili;M. Krbec
  4. Real variable methods in harmonic analysis A. Torchinsky
  5. Trigonometric Series A. Zygmund