SOME REMARKS ON DING'S VANISHING THEOREM OF $\delta$-INVARIANT AND MONOMIAL CONJECTRUE

  • Lee, Ki-Suk (Department of mathematics, sookmyung Women's University)
  • Published : 1999.05.01

Abstract

We extend the Ding's vanishing theorem of $\delta$-invariant slightly on a Cohen-Macaulay local ring using the concept of Golod paris. we also investigate the relation between the vanishing of $\delta$-invariant and Hochster's Monomial Conjecture.

References

  1. Minimal Cohen-Macaulay approximations, preprint M. Auslander
  2. Mem. Soc. Math. France v.38 The homological theory of maximal Cohen-Macaulay approximation M. Auslander;R. O. Buchweitz
  3. Comm. Alg. v.21 A note on the index fo Cohen-Macaulay local rings S. Ding
  4. Proc. Amer. Math. Soc. v.122 Auslander's δ-invariants of Gorenstein local rings S. Ding
  5. J. Alg. v.153 Cohen-Macaulay approximation and multiplicity S. Ding
  6. Comm. Alg. v.22 Resolutions mod I and Golod pairs D. Gokhale
  7. Lect. Notes. in Math. v.41 Local Cohomology A. Grothendieck
  8. Contem. Math. v.159 On the index of a homogeneous Gorenstein ring J. Herzog
  9. Nagoya Math. J. v.51 Contracted ideals from integral extensions of regular rings M. Hochster
  10. CBMS Lect. Notes 24, Amer. Math. Soc. Topics in the homological theory of modules over commutative rings M. Hochster
  11. Ph. D. Thesis, Indiana University Mapping cones construction and Golod Pairs C. Kwong
  12. J. Pure Appl. Alg. v.110 A remarkable property of the (co)syzygy modules of the residue field of a nonregular local ring Martsinkovsky
  13. Manuscr. Math v.79 Monomial conjecture and complete intersections J. R. Strooker;J. Stuckrad
  14. Proc. Amer. Math. Soc. v.124 On the higher delta invariants of a Gorenstein local ring Y. Yoshino