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ON THE PRUSS EXTENSION OF THE
HSU-ROBBINS-ERDOS THEOREM

Soo HAk SuNG

ABSTRACT. The Hsu-Robbins-Erd8s theorem states that if {Xn,
n > 1} is a sequence of independent and identically distributed
random variables, then E‘X% < oo and EX; = 0 if and only if-
T L P(| ¥ %=1 Xk| = ne) < oo for every € > 0. Under some auxil-
iary conditions, Spitaru (1994) extended this to the case where the
Xn are independent, but their distributions come from a finite set.
Pruss (1996) proved Spitaru’s result under weaker conditions. The
purpose of this paper is to improve Pruss conditions.

1. Introduction

Suppose that N = {1,2, - - - } is partitioned into p subsets Ny, - -- , Np,
andlet Y3, - - ,Y, be prandom variables. Let {X,n > 1} be a sequence
of independent random variables such that X,, has the same distribu-
tion as Y; whenever n € N;,1 <i<p,andlet S, = X +---+ X,,.
Recently, Spitaru [5] proved that if the auxiliary Conditions A and
B(below) hold, then

[o0}
(1) Z P(|Sn| > en) < o0, Ve>0,

n=1

if and only if

(2) ZZP | Xk > n) < 0

1lk=1
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and

n—+o0 1

(3) lim > EXpI(|Xx| <n) =0
k=1

Condition A. For each i € {1,---,p}, there exists a; € [0,1] and
positive constants C;(z), C2(%) such that

Cl(i)na" S ai(n) S Cg(i)n“‘+1/2

for all n large, where a;(t) =f{l€ N;: I <t} for 1<i<pand t € R.
Condition B. There is a constant C such that , for any n € N and

i=1,---,p
> Leont
k3 n3
kG[n,oo)nNi

For the case of p = 1, i.e.,, {Xn,n > 1} is a sequence of identically
distributed random variables, Hsu-Robbins-Erdés theorem (see, Hsu
and Robbins(3] and Erdés [1,2]) states that (1) holds if and only if (2)
and (3) hold.

For the general case, Spataru [5] showed that without the auxiliary
conditions (1) always implies both (2) and (3). Pruss [4] and Sung (7]
independently proved that the converse is not true. On the other hand,
Pruss [4] provided some other weaker auxiliary conditions, for every

1€ {1’ T 1p}
(4) [( V; or W; or X;) and Y] or Z;,

under which (2) and (3) imply (1). The reader should be referred to
Pruss’ paper to find the definitions of the conditions labeled V, W, X
and Z. However, Pruss [4] could not prove that (4) can be replaced by
Y, and left it as an open problem. The Condition Y; is as follows.

Condition Y;. There is a constant C; such that
a;(2n) < C;ai(n)
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for n sufficiently large.

Note that Condition B implies Condition Y; for each i € {1,--- ,p},
and Condition Z; implies Y; (see, Pruss [4]).

The purpose of this paper is to solve the open problem. In light of
the above note, the following theorem improves not only that of Spitaru
[5] but also that of Pruss [4].

THEOREM 1. Assume that Condition Y; holds for eachi € {1,--- ,p}.
Then (1) holds if and only if (2) and (3) hold.

The proof of the theorem is presented in Section 3. Section 2 collects
some preliminary lemmas.

2. Preliminary lemmas

To prove the main theorem we will need the following several lemmas.
The next three lemmas come from Pruss [4].

LEMMA 1. Assume that Condition Y; holds for each i € {1,--- ,p}.
Then (2) holds if and only if

n

(5) > > P(IXk| > nd) < 0

n=1k=1
for each § > 0.

LEMMA 2. Suppose that Y; has finite mean for each i € {1,--- ,p}.
Assume that

n
(6) lim = > EXi=0.
k=1

n—oco N

Then the following statements are equivalent:

(i) condition (1) holds, i.e., S,,/n converges completely to 0 as n —
00.
(i) 32, P(|(S9)*| > ne) < oo, for every € > 0 and each i €

{1,---,p}, where S = 2 ke,mjnn; Xk and X° denotes the
symmetrized random variable associated with X.
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LEMMA 3. Suppose that Y; has finite mean for each i € {1,--- ,p}.
Then (3) and (6) are equivalent.

Now we derive new results under the assumption that Condition Y;
holds.

LEMMA 4. Assume that Condition Y; holds. Then there exists a
constant ¢ such that

(7 : cna;(n) < Zaz(k < na;(n)

for n sufficiently large.

Proof. The second inequality of (7) is obvious, since «;(-) is a non-
decreasing function. On the other hand, we get from the monotonicity
of ;(+) and Condition Y; that

>et)2 5] e ((5) 2 5] g C[3)

> 5] gatn -1 2 | 3] Flam -1 2 | 7] s5am)

for n sufficiently large, where |a| denotes the greatest integer not ex-
ceeding a. Thus the first inequality of (7) is proved. O

By applying Lemma 4, we have the following lemma which plays an
essential role in our main theorem.

LEMMA 5. Assume that ConditionY; holds. Then E|X|a;(X|) < oo
if and only if Y o> 1 o (n)P(|X| > n) < oo.

Proof. Noting that

Y amP(X|2n) =) PG<IX|<i+1)) ai(n),
n=1 n=1

=1
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we have by Lemma 4 that
(8)
o0 o0
a1 Y jei(H)PG <IX|<j+1) <) ai(n)P(X| > n)

7=1 n=1
<Y ja(HPG < IX|<j+1)
j=1

J

for some constant c;. Also, from the following fact
o0
E|X|es(1X]) = Y ElX|ea(IXDI(G < |1X| <5 +1),
. j=0
we get by Condition Y; that

Y iei()P(G < |1X] < j+1) < E|X]es(IX))
Jj=1

(9) <Y G+ D +1)PG <X < j+1)
J=0

0o
<e Y ja()P(G<|X|<j+1)
j=1
for some constant cp. Thus the conclusion follows from (8) and (9). O
Finally, we will need the following elementary lemma.
LEMMA 6. Assume that Condition Y; holds. Then
@;(27t) < (2C;) as(t)
for sufficiently large t € R and each j € N.
Proof. From the monotonicity of a;(-) and Condition Y, we have
a;(2t) < a;(2([t] + 1)) < Ciai([t] + 1) < Ci(as(t) + 1) < 2C;04(t)
for sufficiently large t. The proof is completed by applying this j—‘times.D
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3. Proof of Theorem 1

The fact that (1) implies (2) and (3) was already proved by Spataru
[5]. Conversely, assume that (2) and (3) hold. The proof is based
on certain ideas of Stout [6]. In view of Lemma 1, Lemma 2, and
Lemma 3, we can assume that for each n, X, is symmetric. Let € > 0
be given. For each n and k(1 < k < n), define X}, = XpI(|Xi| <
nf), X" = XiI(|Xx| > ne/N), and X/} = XxI(n? < |Xi| < ne/N),
where p(O < p < 1) and N(positive mteger) are chosen later in the

proof. Let S' = Zke[l,n]ﬁN nk’S”(z) Zkeu n)NN; Xnk’ and

Sm( i) _ Zke[l N X///

From the inequality e®* <1+ + % “elel for all z € R, noting that
| X! .| < nf, we have for ¢ > 0

t t t2 t
E {eXP (;X;uc)} <E {1 + EX:zk + Wlxﬁkp exp (;IX:JJ)}
t2 ! 2 t !
=1+E _2—2|X'nk| €xXp _|Xnk|
<1+ 2z e (s ) BIXP
<o { oz e 5 ) Il )

By independence -

o )L Pl ()
n ke(1,n]NN; n
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Thus, choosing t = 2logn/e, we have
P(S.? > ne) < e *E {exp (Tt—lSL(i))}

t2 t
< exp {-—te + on1=p &P (nl—P) E|K|}

2
<=
n2

for n sufficiently large, since ;%2:; exp(1=;) — 0 as n — co. Thus

(10) Z P(S'® > ne) < 0.

n=1

From the definition of X/, , it follows that

n

P(s!9>n< Y P (|xk| > %)

kE[1,n]NN;
This entails by Lemma 1 that
w 3
(11) 3" P(8D > ne) < co.

n=1

Since | X" | < ne/N,S8" > ne implies that there are at least N
non-zero X, for k € [1,n] N N;. Hence

P(SPD>ne) < ST P(XHY #£0,--- X1 #0)
ki1 <---<kn
< Y PUXkl2nfy--- | Xky| 2 0f)
ky<---<kn

= () ipani 2
< (";E,“’) P(¥ilas([¥i]) > nPaxs(m))],
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where the summation Zk1<---<kN is taken for all N-tuples (kq,--- ,kn)
with k1 < .-+ < ky and k; € [1,n] N N; for each j. By Markov’s
inequality,

P(S2® > ne) < (“z‘”)) [E |Yz’|ai(|Yil)]N

N nPa;(nP)
< [Ely;laz(l},'l—b] npNaN(np).

Thus we have

— (%) N 3 aiv(n)
> Py 2 ne) < BNV Y ZRivss

n=1 n=1
oo 2k+1—1 (n)
Yijes([Yil)]Y
= BB 3 3 N7
N(2k+1)
< [ElYiles (Vi)Y Z R(pN-1) oV (2%0)

)N(k(l—p)+2)

2C;
< clEIYilas(1%D)] Z( i

k=0

for some constant ¢ > 0. The last inequality follows from Lemma 6,
since

ai(2k+1) < ai(gtk(l—P)H?zkp)
< (2C,-)U°(1“P)J+2a,-(2’“f’)
< (2C;)F1=P12g,(25%)
for k sufficiently large. Choose 0 < p < 1 such that (2C;)1=°/2° < 1

and then choose large integer N such that 2((2C;)1=?/2°)¥ < 1. Then
we have, noting that E|Y;|a;(]Y;|) < co by Lemma 5, that

(12) : Z P(S,’{'(i) > ne) < oo.

n=1
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From (10), (11), and (12), we get that

(13) P(S,, > 3pen) < oo,

n=1

since

NE

P(S,, > 3pen)
1

3
||

w p . . .
<Y TIPS 2 ne) + P(SLY 2 ne) + (S 2 me)].
n=11i=1
By replacing X by — Xk in (13), we obtain that

(14) i P(S,, < —38pen) < oo.

n=1

Combining (13) and (14) gives

Z P(|Sn| > 3pen) < oo,

n=1

and so (1) is proved.
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