Active optical coupler using the side polished single mode fiber and thermo-optic polymer multimode planar waveguide

측면 연마된 단일모드 광섬유와 열 광학 다중모드 평면도파로를 이용한 능동형 광 결합기

  • 김광택 (경북대학교 전자전기공학부) ;
  • 유호종 (경북대학교 전자전기공학부) ;
  • 김성국 (경북대학교 전자전기공학부) ;
  • 이소영 (경북대학교 전자전기공학부) ;
  • 송재원 (경북대학교 전자전기공학부) ;
  • 이상재 (경북대학교 전자전기공학부) ;
  • 김시홍 (경북대학교 센서공학과) ;
  • 강신원 (경북대학교 센서공학과)
  • Published : 1999.06.01

Abstract

In this paper, we have investigated a fiber type active coupler which utilizes the mode coupling between the side polished single mode optical fiber and the active multimode planar waveguide. The proposed device can be used for not only tunable wavelength filter or optical intensity modulator but also a tool for measuring optical properties of guiding material such as refractive index, birefringence, electro-optic coefficient, and thermo-optic coefficient. We gave designed and optimized a coupler structure using the BPM and fabricated the device using thermo-optic polymer as active planar waveguide overlay. The device showed that insertion loss was less then 0.5 dB, extinction ratio was -13 dB at the resonance wavelength, and the wavelength tunablity due to thermo-optic effect was -1.5 nm/$^{\circ}C$. The active coupler using thermo-optic effect can be used as a wavelength tunable filer, an optical intensity modulator and an optical sensor. pulses that are subsequently compressed by a dispersive optical fiber. Experimental results show that $sech^2$ shape pulses with a pulse width of ~14 ps and a time bandwidth product of ~0.34 are successfully generated at 10 GHz repetition rate. In contrast to other methods, such as higher order soliton compression, this approach does not depend on the optical power and thus shows promise for application to low-power lasers.

Keywords

References

  1. Appl. Phys. Lett. v.32 K. O. Hill;Y. Fujii;D. C. Johnson;B. S. Kawasaki
  2. Opt. Lett. v.14 G. Meltz;W. W. Morey;W. H. Glenn
  3. Optics Lett. v.6 B. S. Kawasaki;K. O. Hill;R. G. Lamont
  4. Optics Lett. v.7 S. K. Sheem;T. G. Giallorenzi
  5. Eletron. Lett. v.16 R. A. Bergh;G. Kotler;H. J. Shaw
  6. Eletron. Lett. v.27 no.11 R. P. Bryan;G. R. Oleright
  7. Electron. Lett. v.28 K. McCallion;W. johnstone;G. Thursby
  8. Optics Lett. v.17 W. Johnstone;G. thursby;D. Moodie;K. McCallion
  9. IEE Proc-Optoelectron. v.141 W. johnstone;G. Fawcett;L. W. K. Yim
  10. J. Opt. Soc. Am. v.15 S. A. Hamilton;D. R. Yankelevich;A. Knoesen
  11. J. of Lightwave Tech. v.7 M. B. J. Diemeer;J. J. Brons;E. S. Trommel