Effects of Dietary Protein Concentration on Growth and Feed Utilization of Juvenile Haddock (Melanogrammus aeglefinus)

Jeong D. Kim and Santosh P. Lall*

Department of Feed Science and Technology, College of Animal Resources Sciences, Kangwon National University, Chuncheon 200-701, Korea.

*Institute for Marine Biosciences, National Research Council, 1411 Oxford St., Halifax, N.S., Canada B3H 3Z1

The effects of dietary protein level on growth, feed utilization and liver size were studied with juvenile haddock (Melanogrammus aeglefinus) of 6.88 ± 0.54 g (mean ± SD). Five isenergetic diets containing 44.4 to 64.7% protein were fed to triplicate groups of 50 fish in a flow-through system for 6 weeks. All fish showed a relative increase of more than 300% in final weight. There were, however, no significant differences (P>0.05) in weight gain (16.1 to 17.3 g) and specific growth rate (2.9 to 3.0) among fish groups. A higher protein diets resulted in a lower feed intake. Feed: gain ratio linearly improved (P<0.05) when protein level increased from 44.4 to 59.7%. The lowest protein efficiency ratio was observed in fish fed the highest protein diet. Hepatosomatic index of fish significantly decreased from 10.7 to 7.3% with an increase in protein level. Results from this study suggest that haddock could grow well even when fed the diet with protein lower than 44.4%.

Key words: Melanogrammus aeglefinus, Protein level, Growth, Feed utilization, Liver size

서 론

해덕(haddock, Melanogrammus aeglefinus)은 Atlantic cod, silver hake 및 pollock 등이 포함된 대구과의 어종이다(Coad, 1995). 해덕은 납수성으로 자연 서식지에서는 redfish, capelin 그리고 sandeel과 같은 어류를 포식하며 자란다(Jiang and Jorgensen, 1996). 이러한 양식에 국한된 캐나다 서서히 지역에서는 어종의 다양성을 위해 납수성의 해덕을 주요 재배어종으로 개발하기 위한 집중적인 연구를 시도하고 있다(Watwood, 1994). 캐나다에서는 해덕에 관한 연구나 철학을 내달고 있는 반면, 지난 십여년간 같은 대구과 어종인 대구 (Cadis morhua)의 영양에 관련하여 상 대적으로 많은 연구결과(Lied et al., 1982; Lie et al., 1986; Dos Santos and Jobling, 1988; Herme

*이 연구는 '97년도 강원대학교 가성회 교수 해외 연구지원에 의하여 이루어졌음.
김정대 · Santosh P. Lalli

발표자이름 추출: 김정대, Santosh P. Lalli

et al., 1989; Foster et al., 1993; Herme and Kahrs, 1997)가 노르웨이 연구자들에 의해 보고
되었다. 그러나, 샤폴리판코의 중요성에도 불구하고 단백질 요구량에 관한 연구결과는 지금까
지 매우 드물게 보고되었다. Lie et al. (1988)는 사료내 단백질, 지방 및 탄수화물로부터의 이용
가능 에너지가 각각 60%, 25% 및 15%로 구성될 때 대구의 적정 성장이 이루어질 수 있다고 보고
하였다. 후속적으로, Jobling et al. (1991)은 사료
내 단백질에 의존하는 대구의 비율이 0.4에서
0.5일 때 육성 대구가 적절 성장을 보았다고 보
고하였다. 그러나 이러한 결과는 적정 성장을 위
한 단백질의 양적수준을 의미하는 것이라면
상대적 수준을 의미한다. 성장고장 체 단백질의
증가를 의미한다(Bondi, 1987). 단백질은 사료내
가장 강력한 구성원소로 가기에 대상어종의
충청산성비에 상당한 비중을 차지할 수 있다. 따
라서, 사료 비생산성의 단백질 요구량은 충청산
비의 질감을 위해 무엇보다 먼저 정확하게 측정
되어야 한다.

한편, 어분의 지방은 소화기관 주위에 축적지
방으로 저장되는 태아종과는 달리 대구가 어유
는 간(liver)에 지방을 축적한다(Love, 1970). 사
료내 지방의 수준이 높으면서 축적지방의 증가
로 인한 간 무게의 유의적인 증가가 일어나는
것은 여러 연구자들에 의해 보고되었다(Lie et
al., 1986, 1988; Jobling et al., 1991; Grant et al.,
1998). 그러나, 관행사료를 섭취한 해택의 간내
지방축적 수준에 대한 연구는 지금까지 보고되
지 않았다. 본 연구는 단백질 함량을 달리한 동
어니지 혼합의 실험사료를 급여한 대구의 성장
과 사료이용효율 및 간 중량지수를 조사하기 위
하여 수행되었다.

제료 및 방법

실험동물, 실험조건 및 실험사료

캐나다 해양연구소 시험사육장에서 부화되어
사육된 영근 어체종 6.88±0.54g의 해덕(Melano-
grammus aeglefinus) 지어를 사육실험에 이용하였
다. 각 사육수조당 50마리의 어체를 15개 원형수
조에 배치한 후 사육실험 개시시까지 3주간 적응
시켰다. 이 기간중에는 5종의 실험사료를 동일한
양으로 혼합한 사료를 하루 세 번씩 급여하였다.
 실험조에서 각 수조
의 어체에 대한 계량 및 마리수 측정을 수행하였
으며, 실험사료는 6주간 하루 세 번씩 육안으로
보아 섭취도가 떨어질때까지 급여하였다. 사육
실내 광적기는 12hr : 12hr light로 유지하였
으며, 사료 수조의 조도는 40에서 60 lux였다.

윤분사료와 수온은 측정 조사하였으며 실험기간
동안의 평균치는 각각 11mg/l 및 13°C 이었다.

위의 사료에 대한 인공류의 가소화 에너지를
사용하여(NRC, 1993), kg당 가소화 에너지 약
16.7MJ을 근원하는 5종의 실험사료를 5%의 수준
동등으로 풍건을 기준 40~60% (알데지스 44.4~
64.7%)의 단백질을 하루 두회로 제조하였다(Table
1). 단백질 이용율의 개선을 위해 각 사료내 단백
질 수준의 25%를 casein으로 근원하였다. 이

문서의 위에 있는 출처는 위치를 찾을 수 없습니다. 할당된 페이지는 138입니다. 이 문서의 내용은 한국어로 작성되어 있습니다. 문서의 주요 내용은 실험동물의 사육조건과 사료의 성분, 그리고 실험의 결과를 설명한 것입니다. 실험동물은 캐나다 해양연구소 시험사육장에서 부화하여 사육된 영근 어체종 6.88±0.54g의 해덕(Melano-
사료대 단백질 수준이 해덕(Melanogrammus aeglefinus)의 성장과 사료이용효율에 미치는 영향

Table 1. Ingredient composition (%) of the experimental diets

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Dietary protein levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Fish meal¹</td>
<td>25.8</td>
</tr>
<tr>
<td>Krill meal²</td>
<td>2.0</td>
</tr>
<tr>
<td>CPSP-G³</td>
<td>5.0</td>
</tr>
<tr>
<td>Casein⁴</td>
<td>11.1</td>
</tr>
<tr>
<td>Fish oil⁵</td>
<td>10.1</td>
</tr>
<tr>
<td>Ground wheat⁶</td>
<td>31.1</td>
</tr>
<tr>
<td>Whey⁷</td>
<td>7.0</td>
</tr>
<tr>
<td>Vit. premix⁸</td>
<td>1.5</td>
</tr>
<tr>
<td>Min. premix⁹</td>
<td>0.5</td>
</tr>
<tr>
<td>Choline¹⁰</td>
<td>0.2</td>
</tr>
<tr>
<td>Corn starch¹¹</td>
<td>5.7</td>
</tr>
</tbody>
</table>

¹Composed of 75% of herring meal (Sea Life Fisheries Inc., Canada) and 25% of Norse-LT 94 (Silfas Karmsund AS, Norway).
²Special Marine Products Ltd., West Vancouver, Canada.
³Hydrolyzed fish meal, Sopropeche, France.
⁴US Biochemical, Cleveland, OH.
⁵Stabilized with 0.06% ethoxyquin, Commeau Seafood, Saulnierville, NS.
⁶Dover Mills Ltd., Canada.
⁷Farmers, Truro, Canada.
⁸Vitamin added to supply the following (per kg diet): vitamin A, 8000 IU; vitamin D₃, 4500 IU; vitamin E, 300 IU; vitamin K₃, 40 mg; thiamine HCl, 50 mg; riboflavin, 70 mg; D-Ca pantothenate, 200 mg; biotin, 1.5 mg; folic acid, 20 mg; vitamin B₁₂, 0.15 mg; niacin, 300 mg; pyridoxine HCl, 20 mg; ascorbic acid, 300 mg; inositol, 400 mg; BHT, 15 mg; BHA, 15 mg.
⁹Mineral added to supply the following (per kg diet): manganese sulfate (32.5% Mn), 61.5 mg; ferrous sulfate (20.1% Fe), 62.3 mg; copper sulfate (25.4% Cu), 19.8 mg; zinc sulfate (22.7% Zn), 165.2 mg; cobalt chloride (24.8% Co), 20.2 mg; sodium selenite (45.6% Se), 1.1 mg; sodium fluoride (45.2% F), 9.4 mg.
¹⁰Pregelatinized, National Starch and Chemical Co., USA.

료시 반복당 5마리의 어류를 무작위로 채취하여

이점된 간 무게를 측정하였다. 사료의 일반성

분(Table 2)은 AOAC(1990)의 방법에 따라 분석

하였는데, 수분은 105℃의 오븐에서 24 시간 건

조하였으며, 단백질(N×6.25)은 캔달 방법으로,

지방은 에테르추출법으로, 조성은은 1.25% H₂SO₄

용액과 1.25% NaOH 용액으로 소화시킨후, 회분

은 550℃에서 12시간 회화시켜 분석하였다. 활성

할당은 ammonium oxalate 용액으로 절편시킨

후 H₂SO₄ 용액과 반응시켜 KMnO₄로 적정하여

구하였다. 인(Ι)은 vandate molybdate-yellow

법으로 470nm에서 spectrophotometer로 분석하

였다. 양주간 결과의 통계적 분석은 분산분석과

Duncan (1955)의 multiple range test에 의하여

이용하여 실시하였다.

결과 및 고찰

단백질의 함량을 달리한 실험사료를 개시어체

중 6.88g의 해덕 지어에 6주간 급여하여 측정한

성장률 및 사료이용효율은 Table 3에 나타난 바

와 같다. 본 실험기간 동안 모든 처리군의 해

덕의 해사에도 발생하지 않았으며, 모든 어류가

- 139 -
Table 2. Chemical composition (g/100 g) of the experimental diets given on as-fed basis

<table>
<thead>
<tr>
<th>Composition</th>
<th>Protein level (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Moisture</td>
<td>9.8</td>
</tr>
<tr>
<td>C. protein</td>
<td>40.1</td>
</tr>
<tr>
<td>C. lipid</td>
<td>16.3</td>
</tr>
<tr>
<td>C. fiber</td>
<td>1.6</td>
</tr>
<tr>
<td>C. ash</td>
<td>5.2</td>
</tr>
<tr>
<td>NFE¹</td>
<td>27.0</td>
</tr>
<tr>
<td>Ca</td>
<td>0.7</td>
</tr>
<tr>
<td>P</td>
<td>1.0</td>
</tr>
</tbody>
</table>

¹Nitrogen-free extracts = 100-(moisture + c. protein + c. lipid + c. fiber + c. ash).

Table 3. Growth and feed utilization of fish fed the diets with different protein levels for 6 weeks²

<table>
<thead>
<tr>
<th>Protein level in diet (%)²</th>
<th>Initial wt. (g/fish)</th>
<th>Wt. gain (g/fish)</th>
<th>SGR³</th>
<th>Feed intake (g DM/fish)</th>
<th>Feed:gain ratio⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 (44.4)</td>
<td>6.88±0.42³</td>
<td>16.10±0.20³</td>
<td>2.88±0.08³</td>
<td>12.27±0.23³</td>
<td>0.76±0.01³</td>
</tr>
<tr>
<td>45 (49.4)</td>
<td>6.90±0.41³</td>
<td>16.73±0.40³</td>
<td>2.94±0.08³</td>
<td>11.80±0.15³</td>
<td>0.71±0.01³</td>
</tr>
<tr>
<td>50 (54.3)</td>
<td>6.87±0.38³</td>
<td>17.34±0.83³</td>
<td>3.00±0.02³</td>
<td>11.78±0.43³</td>
<td>0.68±0.01³</td>
</tr>
<tr>
<td>55 (59.7)</td>
<td>6.89±0.33³</td>
<td>17.30±0.19³</td>
<td>3.00±0.09³</td>
<td>10.85±0.04³</td>
<td>0.63±0.01³</td>
</tr>
<tr>
<td>60 (64.7)</td>
<td>6.87±0.30³</td>
<td>16.77±0.41³</td>
<td>2.95±0.04³</td>
<td>10.44±0.18³</td>
<td>0.62±0.01³</td>
</tr>
</tbody>
</table>

¹Values (means±SE of three replicate groups) in the same column sharing a common superscript were not significantly different (P>0.05) from each other.

²Values within brackets are % of dietary protein on dry matter basis.

³Specific growth rate = [ln(final wt.) - ln(initial wt.)/duration × 100.

⁴Feed intake, DM/wet wt. gain.

실험사료를 완성하게 잘 섭취하였다. 중성량은 단백질 수준이 44.4%에서 59.7%로 증가함에 따라 16.1에서 17.3으로 증가하였으나 단백질 수준이 가장 높았던 사료 섬유구에서는 약간 빠졌다. 그러나 전체적으로 유의성은 발견되지 않았다. 동일하게 특이성장률(SGR) 또한 2.88에서 3.00으로 유의성이 없었다 (P>0.05). 그러나 간단 사료 섬유량은 단백질 함량이 54.3%로 증가할때 까지는 유의적인 차이를 보이지 않았으나 그 이상의 수준에서는 유의적으로 감소하였다. 사료체수(중단된유량) 섬유량은 단백질 수준의 증가와 함께 유의적으로 증가하였으나 단백질 59.7% 및 64.7% 섬유구에서는 유의성이 없었다. 사탕실계 6주간 한 마리의 어류가 섭취한 질소, 지방 및 가용무질소(NFE)의 함량에 따른 단백질 이용효율(PER) 및 간 중량지수(HSI)는 Table 4에 나타난 바와 같다. 가장 높은 PER (2.95)는 단백질 함량이 가장 낮은 44.4% 섬유구에서는 그리고 가장 낮은 PER(2.48)은 단백질 함량이 가장 높은 64.7% 섬유구에서 발견되었다. 한편, 간 중량지수 또는 PER와 유사한 경향으로 나타났는데, 모든 처리구가 개시시 HSI (6.8%)에 비해 증가하였다.

본 실험사료의 단백질은 44.4%에서 64.7% 수준으로 조정하였으나, 본 실험의 결과 적절성을 위한 사료사료내 단백질 요구량이 44.4% 이하로 멀어질 가능성도 있음을 시사한다. 한편, 고단백질 사료구의 경우 사료섭취량의 감소에 따른 사료체수의 유의적 감소현상이 발견되었는데, 이것은 총에너지에 대한 단백질 에너지비율이 상대적으로 타 처리구에 비해 높았기 때문인 것으로 보인다(Table 4). 아울러, 한 마리의 6주동안 섭취한 영양소의 상대적 에너지 비율을 고려할 때(Table 4), 59.7% 단백질 사료는 Lie et al. (1988) 이 제시한 cod의 적절 성장용 사료내 에너지 분포비율과 거의 일치한다.

단백질 이용효율(PEF)은 사료내 단백질 수준이 증가하거나 단백질 섭취량이 증가함수록 감소한다(Pongmaneerat and Watanabe, 1991; Santínha et al., 1996; 검 등, 1997). 이러한 결과는 고수준의 사료가 공급될 경우 사료내 단백질이 에너지 목적으로 사용되어 암모니아로 배설되기 때문이다(Lied and Braaten, 1984). 따라서, 단백질 요구량은 PEF에 의거하여 결정하는 것은 바람직하지 않다(Guruge et al., 1995). 한편, 간 중량지수(HSI)는 단백질 수준이 증가함에 따라 유의적(P<0.05) 감소하였는데, 이것은 총에너지에 대한 단백질 에너지비율의 상대적 비율 증가에 기인하고 있다. Jobling et al.(1991)은 1,5kg 이상의 대구에 있어 사료내 단백질 에너지의 상대적 비율이 0.4–0.45임에 적절 성장이 이루어지며, 이와 함께 간내 과잉의 지방조직 현상이 유발되지 않는다고 하였다. 그러나 이러한 수치가 0.45 이하로 멀어질 경우 간내 지방조직량은 유익적으로 증가하는데, 이같은 현상을 피하기 위해서는 고단백저지방 사료의 사용이 권장된다(Lie et al., 1986). 본 실험의 결과는 이러한 현상을 잘 잡고 있는데, 단백질 수준이 44.4%에서 64.7%로 증가함에 따라, 단백질 에너지의 상대적섭취비율도 44%에서 69%로 증가하고 그 결과 HSI가 10.7%에서 7.3%로 감소하였다. 개시의 수치(6.8)에 비교할 경우 최고수준의 단백질섭취량는 거의 HSI에 있어 큰 차이를 보이지 않았다.

요약

금관어체중 6.88±0.54g의 해덕(Melanogrammus aeglefinus)을 사육수조급 50마리씩 15개 원형수조에 배치한 후 6주간 사육실험을 실시하였다. 유수식 수조내 수량은 250ℓ였으며 유속은 분당 4ℓ, 실험기간 동안의 육존산소와 수온 평균치는 각각 11mg/ℓ 및 13℃이었다. 두조군으로 단백질 수준은 44.4, 64.7%로 나누고 가소화 에너지

<table>
<thead>
<tr>
<th>Protein level in diet (%)</th>
<th>Nitrogen (g/fish)</th>
<th>Lipid (g/fish)</th>
<th>NFE (%)</th>
<th>PER (%)</th>
<th>HSI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 (44.4)</td>
<td>0.87(44)</td>
<td>2.22(34)</td>
<td>3.69(21)</td>
<td>2.95</td>
<td>10.7</td>
</tr>
<tr>
<td>45 (49.4)</td>
<td>0.93(49)</td>
<td>1.99(32)</td>
<td>3.13(19)</td>
<td>2.87</td>
<td>10.3</td>
</tr>
<tr>
<td>50 (54.3)</td>
<td>1.02(55)</td>
<td>1.62(27)</td>
<td>2.84(18)</td>
<td>2.71</td>
<td>9.0</td>
</tr>
<tr>
<td>55 (59.7)</td>
<td>1.04(62)</td>
<td>1.24(23)</td>
<td>2.28(16)</td>
<td>2.69</td>
<td>8.2</td>
</tr>
<tr>
<td>60 (64.7)</td>
<td>1.08(69)</td>
<td>0.91(18)</td>
<td>1.90(14)</td>
<td>2.48</td>
<td>7.3</td>
</tr>
</tbody>
</table>

1) Values (means of three replicate groups) in the same column sharing a common superscript were not significantly different (P>0.05) from each other.
2) Values in brackets are % relative to total energy intake (Lie et al., 1988).
3) Nitrogen-free extracts.
4) Protein efficiency ratio = wet wt. gain/protein (N × 6.25) intake.
5) Hepatosomatic index = wet livewt./body wt. × 100; that of the initial fish was 6.82.
저는 공히 약 16.7MJ를 함유한 5종의 실험사료를 하루 세 번씩 섭취하도록 먹여주며 급여하여 얻어진 결과는 다음과 같다.

중체량은 단백질 수준이 증가함에 따라 16.1g에서 17.3g으로 증가하였으나 처리구간 유의성이 인정되지 않았다(\(P > 0.05 \)). 그러나 건물사료 섭취량은 단백질 함량이 54.3% 이상의 수준에서는 유의적으로 감소하였다. 중체단위당 건물사료 섭취량은 단백질 수준의 증가와 함께 유의적으로 증가하였으나 단백질 59.7% 및 64.7% 섭취군에서는 유의성이 없었다. 가장 우수한 단백질 이용 효율(2.95)은 단백질 함량이 가장 낮은 44.4% 섭취군에서 나타났으며, 64.7% 섭취군은 가장 저조한 수치(2.48)를 보였다. 간 중량지수는 단백질 수준의 증가와 함께 10.7%에서 7.3%로 유의적으로 감소하였다. 본 실험의 결과 성장율에 기반한 경우 해력의 건물사료 적정 단백질 수준은 44.4% 이하로 유지될 가능성이 있는 것으로 나타났다.

참고 문헌