Adsorption Characteristics of the Heavy Metals, Cd(II) and Pb(II) Ions, on the Si-Immobilized Ulva pertusa

실리카고정 구멍갈파래에 대한 중금속 Cd(II), Pb(II)이온의 흡착 특성

  • Park, Kwang-Ha (Department of Industrial Chemistry, Kangnung National University) ;
  • Park, Mi-A (Department of Industrial Chemistry, Kangnung National University) ;
  • Kim, Young-Ha (Environmetal Science Research Institute, Kangnung National University) ;
  • Choi, Bong-Jong (Department of Environmetal Engineering, Kwan dong University)
  • 박광하 (강릉대학교 공과대학 공업화학과) ;
  • 박미아 (강릉대학교 공과대학 공업화학과) ;
  • 김영하 (강릉대학교 환경과학연구소) ;
  • 최봉종 (관동대학교 환경공학과)
  • Received : 1998.12.28
  • Published : 1999.04.25

Abstract

Adsorption characteristics of heavy metal ions, Cd(II) and Pb(II), on eastcoast-living algae, ulva pertusa, has been studied in our experiment. The Maximum adsorption amount of Cd(II) and Pb(II) ions on 1 g of the ulva pertusa were 2.3 mg, 3.1 mg in alkaline and 2.0 mg, 2.8 mg in acidic solution. However 3.4 mg, 7.3 mg in alkaline and 3.1 mg, 6.5 mg in acidic solution were shown on the Si-immobilized ulva pertusa in the same condition. Thus, Si-immobilized ulva pertusa adsorbs more amount of heavy metals, Cd(II), Pb(II), than the ulva pertusa, and more effective absorbent in alkaline. Furthermore, more amounts of Pb(II) ion were absorbed compare to Cd(II) ion in our work. Recovery ratio of Cd(II) and Pb(II) ions on the ulva pertusa were 55.0~61.0%, 59.7~66.8% respectively and 87.6~97.5%, 83.5~99.3% on the Si-immobilized ulva pertusa.

Keywords

algae;heavy metal;biosorption;immobilization;ulva pertusa

References

  1. Biotechnology and Bioengineering v.34 J. Yin;W. Harvey
  2. Appl. Microbiol Biotechnol v.24 A. Nakajima;T. Sakaguchi
  3. Environ. Sci. & Tech. v.26 H. D. Ke;G. D. Rayson
  4. J. Bacteriology v.143 no.1 R. J. Doyle;T. H. Matthews;U. N. Streips
  5. Environ. Sci. Technol. v.20 D. W. Darnall;B. Greeene;M. T. Henzl
  6. Environ. Sci. Tech. v.15 R. H. Crist;K. O. Norman
  7. Wat. Res. v.22 no.7 H. B. Xue;L. Sigg
  8. J. Kor. Environ. Sci. Soci. v.6 no.15 M. G. Lee;J. H. Suh;S. K. Kam
  9. J. of the Korean Enviro. Scie. Soci. v.6 no.1 Kab-Hwan Ahn;Young-Kook Shin;Kuen-Hack Suh
  10. Biotechnol. Bioeng. v.23 M. T. Sezod;B. Volesky
  11. Korean J. Environ. Biol. v.15 no.2 K. K. Hong;K. I. Sung
  12. Plant Cell Physiol. v.28 no.8 M. Okada;M. Ohtomi;K. Nakayama
  13. Phycologia v.29 C. Boyen;B. Kloareg;M. Polne-Fuller;A. Gilbor
  14. Biol. Chem. v.261 no.30 J. C. Steffens;F. H. Donald;B. G. Williams
  15. Marine Biology v.115 J. Pavicic;B. Raspor;D. Martincic
  16. London: Royal Society of Chemistry no.61 Trace Metal Remove from Aquous Solution D. W. Darnall;B. Greene;M. Nosea;R. A. McPherson;M. Henzl;M. D. Alexander;R. Thomson(ed.)
  17. J. Appl. Micorbiol. Biotechnol. v.16 A. Nakajima;T. Horikoshi;T. Sakaguchi
  18. Plant Physiol. v.76 J. George
  19. Biotech. and Bioeng. v.33 N. Kuyucak;B. Volesky
  20. Solvent Extraction and ion Exchange v.12 no.4 J. R. Lujan;D. W. Darnall;P. C. Stark
  21. J. Fisheries Research board of Canada v.29 no.9 R. eisler;G. E. Zaroogian;R. J. Hennekey
  22. J. App. Phy. v.1 N. J. Robinson
  23. Biosorbents and Biosorption Recovery of Heavy Metals G. W. Bedell;D. W. Darnall;B. Volesky(ed.)
  24. WRRI Report No. 210 D. W. Darnall
  25. Environ. Sci. Technol. v.15 R. H. Crist;K. Oherholser;N. Shank;M. Nguyen
  26. Plant Cell Physiol. v.27 no.7 M. Fujita;T. Kawanishi
  27. Plant Physiol v.76 G. J. Wagner
  28. Environ. Sci. & Tech. v.14 H. A. Elliott;C. Huang