A Study on the Retention Behavior of Co(II)-Dithiocarbamate Chelates in Reversed Phase-High Performance Liquid Chromatography

역상 액체크로마토그래피에서 Co(II)-Dithiocarbamate 킬레이트의 머무름 거동에 관한 연구

  • Lee, Won (Department of Chemistry, Kyunghee University) ;
  • Kim, Eun-Kyung (Division of liberal art and science, Semyung University) ;
  • Ann, Hye-Sook (Department of Chemistry, Kyunghee University) ;
  • Lee, Jung-Han (Department of Chemistry, Kyunghee University)
  • 이원 (경희대학교 문리과대학 화학과) ;
  • 김은경 (세명대학교 교양학부) ;
  • 안혜숙 (경희대학교 문리과대학 화학과) ;
  • 이정한 (경희대학교 문리과대학 화학과)
  • Received : 1999.04.26
  • Published : 1999.10.25


The retention behavior of Cot(II)-dithiocarbamate(DTC) chelates in reversed phase high performance liquid chromatography was investigated. Enthalpy and entropy of chelates transfer from the mobile phase to the stationary phase were calculated from retention data using van't Hoff plots. The dependence of In k' on enthalpy was decreased with increasing organic solvent ratio on the mobile phase. The compensation temperatures(${\beta}$) calculated from the slope of $-{\Delta}H^0$ vs In k' were in the range of 756.3-888.5 K. From these results. it was found that the retention mechanism of DTC chelates was invariant under the various temperatures and was largely affected by the solvophobie effect. Liniear relationship between S index and log k' in emprical retention equation, $log\;k^{\prime}=log\;{k_w}^{\prime}-S_{\varphi}$ showed that S index was influenced mainly by the interaction between DTC chelates and the mobile phase.


Supported by : 경희대학교


  1. Talanta v.14 A. Hulanicki
  2. Analyst v.100 R. M. Smith;A. M. Butt;A. Thakur
  3. Anal. Chem. v.44 F. K. Huber;J. C. Kraak;H. Veering
  4. J. Kor. Chem. Soc. v.32 no.3 W. Lee;D. W. Lee;Y. J. Kim;H. C. Kim
  5. Anal. Sci. & Tech. v.3 no.3 Y. H. Lee;J. H. Lim;C. H. Kang;W. Lee
  6. Anal. Sci. & Tech. v.8 no.4 W. Lee;I. W. Kim;M. K. Kim;Y. J. Kim;H. R. Jung;K. T. No;S. Y. Kim
  7. J. Chromatogr. v.332 W. Geng;F. E. Regnier
  8. J. Cheromatogr. v.149 P. J. Schoenmakers;H. A. H. Billiet;L. de Galan
  9. Anal. Chem. v.52 L. C. Sander;L. R. Field
  10. Chromatographia v.22 K. Jinno;M. Kuroajima
  11. J. hromatogr. v.218 L. R. Sunder;J. W. Dolan;J. R. Gant
  12. Bull. Kor. Chem. Soc. v.17 no.12 W. Lee;M. K. Kim;I. W. Kim;J. H. park;K. T. No
  13. J. Chromatogr. v.137 M. Lohmuller;P. Heizmann;K. Ballschm
  14. J. Cheromatogr. v.282 P. J. Schoenmakers;H. A. H. Billiet;L. de Galan
  15. J. Chromatogr. v.158 W. R. Melander;D. E. Cambell;C. Horvath
  16. J. Chem. Educ. v.38 W. Manch;W. C. Fernelius
  17. Anal. Sci. & Tech. v.7 no.3 W. Lee;I. W. Kim;C. H. Kang;E. K. Kim
  18. Anal. Chem. v.54 P. Jandra;H. colin;G. Guiochon
  19. J. Chromatogr. v.388 A. Opperhuizen;T. L. Sinnige;J. M. D. Van der Steen;Hutainger
  20. Chromatographia v.13 C. S. Hambali;P. R. Haddad
  21. J. Cheromatogr. v.603 N. Chen;Y. Zhang;P. Lu
  22. J. Cheromatogr. v.179 L. R. Snyder
  23. Introduction to Modern Liquid Chromatography,(2nd ed.) R. L. Snyder;J. J. Kirkland