Determination of the Homocysteine, Cysteine and Methionine in Human Plasma by Gas Chromatography with Electron Capture Detector

기체크로마토그래피-전자포획검출기를 이용한 혈장 중의 Homocysteine, Cysteine 및 Methionine의 동시 분석법

  • Myung, Seung-Woon (Bioanalysis and Biotransformation Research Center Korea Institute of Science and Technology) ;
  • Chang, Yoon-Jung (Department of Chemistry, Sungshin Women's University) ;
  • Yoo, Eun-Ah (Department of Chemistry, Sungshin Women's University) ;
  • Park, Joon-Ho (Bioanalysis and Biotransformation Research Center Korea Institute of Science and Technology) ;
  • Min, Hye-Ki (Bioanalysis and Biotransformation Research Center Korea Institute of Science and Technology) ;
  • Kim, Myung-Soo (Bioanalysis and Biotransformation Research Center Korea Institute of Science and Technology)
  • 명승운 (한국과학기술원 생체대사연구센터) ;
  • 장윤정 (성신여자대학교 화학과) ;
  • 유은아 (성신여자대학교 화학과) ;
  • 박준호 (한국과학기술원 생체대사연구센터) ;
  • 민혜기 (한국과학기술원 생체대사연구센터) ;
  • 김명수 (한국과학기술원 생체대사연구센터)
  • Received : 1999.05.28
  • Published : 1999.10.25

Abstract

A selective and sensitive method for the derivatization of total homocysteine (Hcy) and the related compounds in plasma by gas chromatograph (GC)-electron capture detector (ECD) has been developed. To determine total homocysteine, cysteine (Cys), and methionine (Met) in human plasma using GC-ECD, analytes were reduced and converted into their N(O,S)-ethylearbonyl pentafluoropropyl (PFP) ester by derivatization with ethyl chloroformate and pentafluoropropyl alcohol (PFP-OH) in plasma. The best derivatizing agent N(O,S)-ethyl carbonyl PFP ester, was chosen by comparing the sensitivity of derivatized analysis in GC-ECD. The derivatized analytes in plasma were extracted by chloroform, and subsequently back-extracted with hexane and analyzed by GC-ECD. The calibration carves ($R^2$ > 0.990) were linear over the range $5-50{\mu}mol/L$ of Hcy and Met, $40-400{\mu}mol/L$ of Cys spiked in plasma. The detection limit observed by the established method was below $0.5{\mu}mol/L$. This method is highly sensitive and specific in the analysis of Hcy, Cys, and Met. Therefore, we suggest that this method is appropriate in the analysis of trace concentration of Hcy, Cys, and Met in biological fluids.

Keywords

GC-EDD;homocysteine;cysteine;methionine

References

  1. J. Chromatogr. B v.692 M. Candito;P. Bedoucha;M. H. Mahagne;G. Scavini;M. Chatel
  2. Anal. Biochem. v.168 L. A. Smolin;J. A. Sneider
  3. J. Chromatogr. A. v.729 S. Sypniewski;E. Bald
  4. J. Chromatogr. v.565 J. B. Ubbink;W. J. H. Vermaak;S. Bissbort
  5. J. Clin Lab Invest. v.49 A. Andersson;L. Brattstron;A. Isaksson;B. Israellsson;B. Hultberg
  6. J. Chromatogr. v.593 I. Fermo;C. Arcelloni;E. Devecchi;S. Vigano;R. Paroni
  7. J. Chromatogr. B v.727 S. -W. Myung;M. Kim;H. K. Min;E. A. Yoo;K. r. Kim
  8. J. Chromatogr. B v.719 I. Fermo;c. Arcelloni;G. Mazzola;A. D'Angelo;R. Paroni
  9. Clin. Chem. v.39 P. M. Ueland;H. Refsum;S. P. Stabler;M. R. Malinow;A. Andersson;R. H. Allen
  10. J. Chromatogr. B v.664 H. Kataoka;K. Takagi;M. Makita
  11. FEBS v.280 P. Husek
  12. Biochem. Phamacol. v.52 B. J. Mills;C. A. Lang
  13. Anal. Biochem. v.162 S. P. Stabler;P. K. Marcell;E. R. Podell;R. H. Allen
  14. J. Liq. Chrom & Rel. Technol. v.20 M. N. Reddy;C. Behnke
  15. J. Chromatogr. v.552 P. Husek
  16. Clin. Chem. v.39 T. Fiskerstrand;H. Refsum;g. Kvalheim;P. Magne
  17. J. Chromatogr. A v.776 J. O. Sass;W. Endres
  18. J. Chromatogr. v.579 K. Hyland;T. Bottiglieri
  19. Circ. Res. v.79 M. R. Malinow;S. S. Kang;L. M. Taylor;P. W. K. Wong;T. Inahara;D. Mukerjee;B. Coull;G. Sexton;B. Upson