Variational-Type Inequalities on Reflexive Banach Spaces

Lee, Byung-Soo (Kyungsung University)
Lee, Suk-Jin1(Kyungsung University)
Jung, Doo-Young (Kyungsung University)

In this paper, we consider the existence of solutions to the variational-type inequalities for single-valued mappings and set-valued mappings on reflexive Banach spaces using Fan's section theorem.

1. Introduction and preliminaries

Variational inequalities introduced by Hartman and Stampacchia[5] have been extended and generalized in various directions as a powerful tool of current mathematical technology.

In this paper, we consider the existence of the solutions to the variational-type inequalities for single-valued mappings on reflexive Banach spaces, under different conditions from Behera and Panda[3]. And we consider the existence of the solutions to the variational-type inequalities for set-valued mappings on reflexive Banach spaces.

Now we introduce the following famous Fan's section theorem[4].

Theorem 1.1. Let \(K \) be a nonempty compact convex subset of a Hausdorff topological vector space \(X \). Let \(A \) be a subset of \(K \times K \) satisfying the following conditions;

1) Corresponding author.
1991 Mathematics Subject Classification. 49J40.
Key words and phrases. Fan's section theorem, variational-type inequality, set-valued mapping.
(1) for each \(x \in K \), \((x, x) \in A \),
(2) for each fixed \(x \in K \), the set \(A_x := \{ y \in K : (x, y) \in A \} \) is closed in \(K \),
(3) for each fixed \(y \in K \), the set \(A^y := \{ x \in K : (x, y) \in A \} \) is convex in \(K \).

Then there exists an \(x_0 \in K \) such that \(K \times \{ x_0 \} \subset A \).

Throughout this paper, we denote by \(\langle y, x \rangle \) the duality mapping between elements \(y \in X^* \) and \(x \in X \).

2. In case of single-valued mappings

Now we consider variational-type inequalities for single-valued mappings.

Theorem 2. 1. Let \(K \) be a nonempty closed convex and bounded subset of a reflexive Banach space \(X \) and \(X^* \) be the dual of \(X \). Assume that \(T : K \rightarrow X^* \), \(\theta : K \times K \rightarrow X \) and \(\eta : K \times K \rightarrow \mathbb{R} \) are mappings satisfying the following conditions:

(1) \(\langle T(x), \theta(x, x) \rangle + \eta(x, x) = 0 \) for each \(x \in K \),
(2) the mapping
\[
x \mapsto \langle T(y), \theta(x, y) \rangle + \eta(y, x)
\]
of \(K \) into \(\mathbb{R} \) is convex for each \(y \in K \),
(3) the mapping
\[
y \mapsto \langle T(y), \theta(x, y) \rangle + \eta(y, x)
\]
of \(K \) into \(\mathbb{R} \) is continuous for each \(x \in K \).

Then there exists an \(x_0 \in K \) such that for all \(y \in K \)
\[
\langle T(x_0), \theta(y, x_0) \rangle + \eta(x_0, y) \geq 0.
\]

Proof. Let \(A := \{(x, y) \in K \times K : \langle T(y), \theta(x, y) \rangle + \eta(y, x) \geq 0 \} \), then it is easily shown that \((x, x) \in A \). For each fixed \(x \in K \),
\[
A_x := \{ y \in K : (x, y) \in A \}
\]
\[
= \{ y \in K : \langle T(y), \theta(x, y) \rangle + \eta(y, x) \geq 0 \}
\]
is closed. Indeed, let \(\{ y_\lambda \} \) be a net in \(A_x \) such that \(y_\lambda \rightarrow y_0 \). Since \(y_\lambda \in A_x \),
we have
\[\langle T(y_x), \theta(x, y_x) \rangle + \eta(y_x, x) \geq 0. \]

Hence by the condition (3),
\[\langle T(y_x), \theta(x, y_x) \rangle + \eta(y_x, x) \to \langle T(y_0), \theta(x, y_0) \rangle + \eta(y_0, x). \]

Thus
\[\langle T(y_0), \theta(x, y_0) \rangle + \eta(y_0, x) \geq 0. \]

Hence \(y_0 \in A_x \) and \(A_x \) is closed.

On the other hand, for each fixed \(y \in K \),
\[A^y := \{x \in K: (x, y) \in A\} \]
\[= \{x \in K: \langle T(y), \theta(x, y) \rangle + \eta(y, x) < 0\} \]
is convex. In fact, let \(x_1, x_2 \in A^y \), \(a \in [0, 1] \) and \(z = ax_1 + (1-a)x_2 \), then by the condition (2),
\[\langle T(y), \theta(z, y) \rangle + \eta(y, z) \]
\[= \langle T(y), \theta(ax_1 + (1-a)x_2, y) \rangle + \eta(y, ax_1 + (1-a)x_2) \]
\[\leq a [\langle T(y), \theta(x_1, y) \rangle + \eta(y, x_1)] + (1-a) [\langle T(y), \theta(x_2, y) \rangle + \eta(y, x_2)] \]
\[< 0, \]

hence \(z \in A^y \) and \(A^y \) is convex. Thus by Theorem 1.1, there exists an \(x_0 \in K \) such that \(K \times \{x_0\} \subset A \). This implies that there exists an \(x_0 \in K \) such that
\[\langle T(x_0), \theta(y, x_0) \rangle + \eta(x_0, y) \geq 0, \]

for all \(y \in K \).

Remark 2.2. We obtained the same result under different conditions in [3].

3. In case of set-valued mappings

Definition 3.1[2]. Let \(X, Y \) be two topological vector spaces and \(T: X \to 2^Y \) be a set-valued mapping. \(T \) is said to be upper semicontinuous (briefly, u.s.c.) at \(x_0 \in X \) if for any open neighbourhood \(N \) containing \(T(x_0) \) there exists a neighbourhood \(M \) of \(x_0 \) such that \(T(M) \subset N \). \(T \) is said to be u.s.c. if \(T \) is u.s.c. at every point \(x \in X \).
Definition 3.2[6]. Let X, Y be two topological vector spaces and $T : X \to 2^Y$ be a set-valued mapping. T is said to be closed at $x \in X$ if for each nets (x_λ) converging to x and (y_λ) converging to y such that $y_\lambda \in T(x_\lambda)$ for all λ, we have $y \in T(x)$. T is said to be closed if it is closed at every point $x \in X$.

Lemma 3.1[1]. Let X, Y be two topological vector spaces and $T : X \to 2^Y$ be a set-valued mapping.

1) if K is a compact subset of X, and T is u.s.c. and compact-valued, then $T(K)$ is compact.

2) if T is u.s.c. and compact-valued, then T is closed.

Now we consider variational-type inequalities for set-valued mappings.

Theorem 3.2. Let K be a nonempty closed convex and bounded subset of a reflexive Banach space X and X^* be the dual of X. Assume that $T : K \to 2^{X^*}$ is an u.s.c. mapping with compact-values, $\theta : K \times K \to X$ is a bounded mapping and $\eta : K \times K \to \mathbb{R}$ is a mapping satisfying the following conditions:

1) for each $x \in K$, there exists $t \in T(x)$ such that $\langle t, \theta(x, x) \rangle + \eta(x, x) = 0$,

2) a mapping

$$x \mapsto \langle t, \theta(x, y) \rangle + \eta(y, x)$$

of K into \mathbb{R} is convex for all $y \in K$ and for all $t \in T(y)$,

3) for each $x \in K$, mappings $y \mapsto \theta(x, y)$ and $y \mapsto \eta(y, x)$ are continuous.

Then there exists an $x_0 \in K$ and $t_0 \in T(x_0)$ such that for any $y \in K$

$$\langle t_0, \theta(y, x_0) \rangle + \eta(x_0, y) \geq 0.$$

Proof. Let $A = \{(x, y) \in K \times K :$ there exists $t \in T(y)$ such that $\langle t, \theta(x, y) \rangle + \eta(y, x) \geq 0 \}$, then it is easily shown that $(x, x) \in A$. For each fixed $x \in K$,

$$A_x := \{y \in K : (x, y) \in A\}$$

$$= \{y \in K :$ there exists $t \in T(y)$ such that $\langle t, \theta(x, y) \rangle + \eta(y, x) \geq 0 \}$$

is closed. Indeed, let (y_λ) be a net in A_x such that $y_\lambda \to y_0$. Since $y_\lambda \in A_x$, there exists $t_\lambda \in T(y_\lambda)$ such that $\langle t_\lambda, \theta(x, y_\lambda) \rangle + \eta(y_\lambda, x) \geq 0$.

Since K is weakly compact, by Lemma 3. 1(1), $T(K)$ is compact and hence without loss of generality, we can assume that there exists $t_0 \in T(K)$ such that $t_\lambda \to t_0$. By Lemma 3. 1(2), T is closed, hence $t_0 \in T(y_0)$. By the condition (3), we have

$$\| \langle t_\lambda, \theta(x, y_\lambda) \rangle + \eta(y_\lambda, x) - (\langle t_0, \theta(x, y_0) \rangle + \eta(y_0, x) \rangle \|$$

$$\leq \| \langle t_\lambda, \theta(x, y_\lambda) \rangle - \langle t_0, \theta(x, y_0) \rangle \| + \| \eta(y_\lambda, x) - \eta(y_0, x) \|$$

$$\leq \| t_\lambda - t_0 \| \| \theta(x, y_\lambda) \| + \| t_0 \| \| \theta(x, y_\lambda) - \theta(x, y_0) \| + \| \eta(y_\lambda, x) - \eta(y_0, x) \|$$

$$\to 0 \text{ as } \lambda \to \infty.$$ Consequently, there exists $t_0 \in T(y_0)$ such that $\langle t_0, \theta(x, y_0) \rangle + \eta(y_0, x) \geq 0$.

Hence $y_0 \in A_x$ and A_x is closed.

On the other hand, for each fixed $y \in K$,

$$A^y := \{ x \in K: (x, y) \in A \}$$

$$= \{ x \in K: \text{ for all } t \in T(y), \langle t, \theta(x, y) \rangle + \eta(y, x) < 0 \}$$

is convex. In fact, let $x_1, x_2 \in A^y$, $a \in [0, 1]$ and $z = ax_1 + (1-a)x_2$, then for all $t \in T(y)$,

$$\langle t, \theta(z, y) \rangle + \eta(y, z)$$

$$= \langle t, \theta(ax_1 + (1-a)x_2, y) \rangle + \eta(y, ax_1 + (1-a)x_2)$$

$$\leq a \left[\langle t, \theta(x_1, y) \rangle + \eta(y, x_1) \right] + (1-a) \left[\langle t, \theta(x_2, y) \rangle + \eta(y, x_2) \right]$$

$$< 0,$$

hence $z \in A^y$. By Theorem 1. 1, there exists an $x_0 \in K$ such that $K \times \{ x_0 \} \subseteq A$. This implies that there exists an $x_0 \in K$ and $t_0 \in T(x_0)$ such that for all $y \in K$, $\langle t_0, \theta(y, x_0) \rangle + \eta(x_0, y) \geq 0$.

Corollary 3. 3. Considering $T: K \to X^*$ in Theorem 3. 2, we obtain Theorem 2. 1 as a corollary.

References

