The Change of Properties and Synthesis of Soluble Polyimides Based on 2,2-Bis(3-amino-4-hydroxyphenyl)hexafluoropropane

2,2-Bis(3-amino-4-hydroxyphenyl)hexafluoropropane을 이용한 용해성 폴리이미드의 합성과 특성변화

  • Kim, Han-Sung (Department of Chemical Engineering, Yonsei University) ;
  • Ha, Soon-Hyo (Department of Chemical Engineering, Yonsei University) ;
  • Chun, Kyoung-Yong (Department of Chemical Engineering, Yonsei University) ;
  • Han, Hak-Soo (Department of Chemical Engineering, Yonsei University) ;
  • Joe, Yung-il (Department of Chemical Engineering, Yonsei University)
  • 김한성 (연세대학교 공과대학 화학공학과) ;
  • 하순효 (연세대학교 공과대학 화학공학과) ;
  • 전경용 (연세대학교 공과대학 화학공학과) ;
  • 한학수 (연세대학교 공과대학 화학공학과) ;
  • 조영일 (연세대학교 공과대학 화학공학과)
  • Received : 1999.06.17
  • Accepted : 1999.10.23
  • Published : 1999.11.10

Abstract

Aromatic soluble polyimides were synthesized from 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane and various dianhydrides such as pyromelltic dianhydride(PMDA), 3,3',4,4'-benzophenone tetracarboxylic dianhydride(BTDA), and 4,4'-(hexafluoroisopropylidene)-bis(phthalic anhydride)(6FDA). Polyimides prepared by thermal imidization were insoluble in common organic solvents (acetone, MNP, DMAc, DMSO, THF, and DMF) but those prepared by chemical imidization were soluble. The difference of solubility was explained by esterification between hydroxyl group and $CH_3COO^-$ from acetic anhydride used as a dehydration agent in chemical imidization. Glass transition temperatures of polyimides by thermal method were higher than those by chemical method. All of the polyimides are stable up to $300^{\circ}C$ regardless of the sample preparation. The x-ray diffraction patterns showed that all polyimides were amorphrous.

Acknowledgement

Supported by : 한국과학재단

References

  1. J. Polym. Sci., Macromol. Rev. v.11 C. E. Sroog
  2. Polyimides: Fundamental and Application M. K. Ghosh;K. L. Mittal
  3. Macromolecules v.22 J. A. Moor;D. R. Robello
  4. Solid State Technol. v.S1 M. T. Pottiger
  5. Polym. Bull. v.34 K. Kim;J. H. Ryou;Y. Kim;M. Ree;T. Chang
  6. J. of Applied Polym. Sci. v.33 S. Kubota;T. moriwaki;T. Ando;A. Fukami
  7. C. S. v.27 J. W. Park;M. Lee;M. H. Lee;S. D. Kim;J. Y. Chang;S. B. Rhee
  8. J. Polym. Sci., Part A: Polym. Chem. v.31 Y. Oishi;M. Shirasaki;M. Kakimoto;Y. Imai
  9. J. Polym. Sci., Part A: Polym. Chem. v.32 T. M. Moy;J. E. McGrath;J. E. McGrath
  10. Macromolecules v.28 D. Yu;A. Gharavi;L. Yu
  11. Polym. Eng. Sci. v.29 D. N. Khnna;W. H. Mueller
  12. J. Appl. Polym. Sci. v.41 T. Omote;Guo-Jin;K. Koseki;T. Yamaoka;K. Koseki
  13. Macromolecules v.23 T. Omote;H. Mochizuki;K. Koseki;T. Yamaoka
  14. Macromolecules v.23 T. Omote;H. Mochizuki;K. Koseki;T. Yamaoka
  15. 폴리머 v.16 김상건;정중하;김헌상;최순자
  16. J. Appl. Polym. Sci. v.59 D. Likhatchev;C. Gutierrz-wing;I. Kardash;R. Vera-Graziano
  17. Polyimide D. Wilson;H. D. Stenzenberger;P. M. Hergenrother
  18. J. Polym. Sci., Polym. Chem. v.31 A. K. Saini;C. M. Carlin;H. H. Patterson
  19. Polymer International v.44 C. Joly;D. Le Cerf;C. Chappey;D. Langevin;G. Muller