Oxalate Precipitation of Lanthanide and Actinide in a Simulated Radioactive Liquid Waste

모의 방사성용액에서 란탄족과 악티늄족원소의 옥살산침전

  • Chung, Dong-Yong (Nuclear Chemical Engineering Research Team, Korea Atomic Energy Research Institute) ;
  • Kim, Eung-Ho (Nuclear Chemical Engineering Research Team, Korea Atomic Energy Research Institute) ;
  • Lee, Eil-Hee (Nuclear Chemical Engineering Research Team, Korea Atomic Energy Research Institute) ;
  • Yoo, Jae-Hyung (Nuclear Chemical Engineering Research Team, Korea Atomic Energy Research Institute) ;
  • Park, Hyun-Soo (Nuclear Chemical Engineering Research Team, Korea Atomic Energy Research Institute)
  • 정동용 (한국원자력 연구소 핵화공연구팀) ;
  • 김응호 (한국원자력 연구소 핵화공연구팀) ;
  • 이일희 (한국원자력 연구소 핵화공연구팀) ;
  • 유재형 (한국원자력 연구소 핵화공연구팀) ;
  • 박현수 (한국원자력 연구소 핵화공연구팀)
  • Received : 1999.06.26
  • Accepted : 1999.10.05
  • Published : 1999.11.10

Abstract

The oxalate precipitation of lanthanide and actinide by oxalic acid was investigated in the simulated radioactive liquid waste, which was composed of 17 elements of alkali, alkaline earth(Cs, Rb, Ba, Sr), transition metal(Zr, Fe, Mo, Ni, Pd, Rh), lanthanide(La, Y, Nd, Ce, Eu) and actinide(Np, Am) in nitric acid solution. The effect of concentrations of nitric acid and ascorbic acid on the precipitation yield of each element in the simulated solution was examined at 0.5 M oxalic acid concentration. The precipitation yields of the elements were usually decreased with nitric acid concentration, nevertheless, the precipitation yields of lanthanide and actinide were more than 99%. Palladium was precipitated due to the reduction of Pd(II) into Pd metal by the addition of ascorbic acid in the oxalate precipitation and then, the precipitation yields of Mo, Fe, Ni, Ba decreased by 10~20% with concentration of ascorbic acid. The reductive precipitation of Pd(II) into Pd metal by the addition of ascorbic acid into the simulated radwaste occurred at below 1 M nitric acid concentration and its yield showed maximum at the ascorbic acid concentration of 0.01~0.02 M. The hydrazine suppressed the reductive precipitation of Pd by the ascorbic acid.

Acknowledgement

Supported by : 과학기술부

References

  1. IAEA Technical Reports series No 214 Evaluation of Actinide Partitioning and Transmutation IAEA
  2. KAERI/RR-1322/94 장수명핵종 소멸처리 기술개발 유재형;이일희;정동영(등)
  3. '95 춘계학술발표회 논문집(Ⅱ) 정동용;김응호;김원호;신영준;유재형
  4. JAERI-M83-011 Development of Partitioning Test with Nuclear Fuel Reprocessing Waste Prepared at PNC - part 1 M. Kubota;I. Yamaguchi;K. Okada;Y. Morita;H. Nakamura
  5. JAERI-M85-070 Development of Partitioning Method: Patitioning Test with Nuclear Fuel Reprocessing Wastes Prepared at PNC -part2- I. Yamaguchi;M. Kubota;K. Okade;Y. Morita;H. Nakamura
  6. JAERI-M93-211 Conceptual Design of Backend Technology R&D Facility for TRU Recycle in the Future Fuel Cycle System S. Fujime;S. Usuda;Y. Morita;Z. Yoshida;Y. SuZuki;T. Furuta;T. Tome;K. Ohta;K. Nishimura;S. Hasegawa
  7. ORNL-5687 Process for the Recovery of Cm-244 from Nuclear Waste J. C. Posey
  8. JAERI-M86-014 Development of Partitioning Method: Fundamental Study on Oxalate Precipitation Method H. Miyashio;M. Kubota
  9. IAEA Technical Reports series No. 137 Chemical Precipitation Process for the Treatment of Aqueous Radioactive Waste IAEA
  10. ORNL/TM-6056 Actinide Partitioning and Transmutation Program Progress Report for Period April 1 to June 30, 1977 D. W. Tedder;J. O. Blomeke
  11. Ceramic Bulletin v.56 D. T. Rankin;G. A. Burney;P. K. Smith;R. D. Sission
  12. JAERI-M88-026 Development of Partitioning Method: Method of Precipitating Transuranium Elements with Oxalic Acid T. Kobayashi;Y. Morita;M. Kubota
  13. JAERI-M89-168 Development of Partitioning Method: Precipitation Behavior of Other Elements in Separating the Transuranic Elements Group with Oxalic Acid T. Kobayachi;K. Shirahashi;M. Kubota
  14. International Commission on Radiation Protection, Limits for Intake of Radionuclides by Workers ICRP Publication
  15. KAERI/RR-1467/95 장수명핵종 소멸처리 기술개발 유재형;이일희;정동용(등)
  16. Korean J. of Chem. Eng. v.12 E. H. Kim;Y. J. Shin;W. H. Kim;D. Y. Chung;S. S. Kim;J. H. Yoo;C. S. Choi
  17. J. of Korean Ind. & Eng. Chem. v.6 D. Y. Chung;E. H. Kim;Y. J. Shin;J. H. Yoo;J. D. Kim
  18. j. of Radioanal. Nucl. Chem., Letters v.201 D. Y. Chung;E. H., Kim;Y. J. Shin;J. H. Yoo;C. S. Choi;J. D. Kim
  19. HWAHAK KONGHAK v.34 D. Y. Chung;E. H., Kim;Y. J. Shin;J. H. Yoo;J. D. Kim
  20. J. of Nucl. Sci. & Tech v.34 E. H., Kim;D. Y. Chung;W. H. Kim;Y. J. Shin;E. H. Lee;J. H. Yoo;C. S. Choi
  21. KAERI/TR-960-98 군분리공정 평가 이일희;유재형;정동용(등)
  22. KAERI/RR-1632/95 장수명핵종 소멸처리 기술개발 유재형;이일희;정동용(등)
  23. J. of Ind. & Eng. Chem. v.4 D. Y. Chung;E. H., Kim;E. H. Lee;J. H. Yoo
  24. The Chemistry of the Transuranium Elements C. Keller
  25. NAS-NS-3060 Radiochemistry of Neptunium G. A. Burney;R. M. Harbour
  26. Polyhedron v.11 M. B. Davies
  27. Encyclopedia of Chemical Technology(3rd ed) R. E. Kirk;D. F. Othmer
  28. Inorganic Chemistry v.16 R. A. Rickman;R. L. Sorensen;K. O. Watkins;G. Davies
  29. Standard Potentials in Aqueous Solution A. J. Bard;R Parsons;J. Jordon
  30. Inorganic Chemistry v.20 C. Creutz