Residual Stress Behavior of PMDA/6FDA-PDA Copolyimide Thin Films

PMDA/6FDA-PDA 공중합 폴리이미드의 잔류응력 거동

  • Jang, Won Bong (Department of Chemical Engineering, Yonsei University) ;
  • Chung, Hyun Soo (Department of Chemical Engineering, Yonsei University) ;
  • Joe, Yungil (Department of Chemical Engineering, Yonsei University) ;
  • Han, Haksoo (Department of Chemical Engineering, Yonsei University)
  • 장원봉 (연세대학교 공과대학 화학공학과) ;
  • 정현수 (연세대학교 공과대학 화학공학과) ;
  • 조영일 (연세대학교 공과대학 화학공학과) ;
  • 한학수 (연세대학교 공과대학 화학공학과)
  • Received : 1999.07.07
  • Accepted : 1999.10.01
  • Published : 1999.11.10


Copolyamic acid PMDA/6FDA-PDA(PAA) and homopolyamic acids PMDA-PDA(PAA) and 6FDA-PDA(PAA) were synthesized from 1,2,4,5-benzenetetracarboxylic dianhydride(PMDA) and 2,2'-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride(6FDA) as the dianhydride and 1,4-phenylenediamine (PDA) as the diamine. Residual stresses were detected in-situ during thermal imidization of the co- and homopolyimide precursors as a function of processing temperature over the range of $25{\sim}400^{\circ}C$ using thin film stress analyzer(TFSA), and morphological structures were investigated by WAXD. In comparison, the resultant residual stress of polyimide films composed of different compositions decreased with the increasing content of PMDA unit in the chain and was about 5 Mpa in compression mode for PMDA-PDA. In this study, the synthesis of random PMDA/6FDA-PDA copolyimide could be completed and compensate for the difficulty of process due to high $T_g$ of PMDA-PDA and relatively higher stress of 6FDA-PDA. It showed that we can make a low level stress copolyimied having excellent mechanical properties by incorporating appropriate rod-like rigid structure PMDA-PDA unit into 6FDA-PDA polyimide backbone which generally shows higher stress due to rotational hinges such as bulky di(trifluoromethyl). Specially, PMDA/6FDA-PDA(0.9:0.1:1.0) satisfied excellent mechanical property and low level stress as an inter layer showing low dielectric constant.


Supported by : 정보통신부


  1. Plastic packaging of microelectronic devices L. T. Manzione
  2. Polyimide: synthesis, characterization and application K. L. Mittal
  3. Solid State Technol v.27 F. Moghadam;K. Moghadam
  4. J. Appl. Phys. v.72 M. Ree;K. J. Chen;D. P. Kirby;N. Katzenellenbogen;D. Grischkowsky
  5. J. Polym. Sci. Part C: Polym. Lett. v.4 Richard, M. Ikeda
  6. Polymer v.28 S. Numata;K. Fugisaki;N. Kinjo
  7. Polym. Eng. & Sci. v.26 H. M. Tong;C. K. Hu;C. Feger;P. S. Ho
  8. Polymer v.32 J. C. Coburn;M. T. Pottiger;S. C. Noe;S. D. Senturia
  9. Polyimides v.1 R. Ginsburg;J. R. Susko;K.L. Mittal(ed.)
  10. J. Electronic Mat. v.16 F. W. Smith;H. J. Neuhaus;S. D. Senturia
  11. Polyimides D. Wilson;H. D. Stenzenberger;P. M. Hergenrother
  12. J. Appl. Polym. Sci. v.43 J. H. Jou;P. T. Huang;W. P. Shen
  13. Polymer v.39 H. Han;J. Seo;M. Ree;S. M. Pyo;C. C. Gryte
  14. Polymer v.34 M. Ree;S. Swanson;W. Volksen
  15. Polymer v.6 M. Ree;T. L. Nunes;W. Volksen;G. Czornyj
  16. HWAHAK KONGHAK v.36 H. Chung;J. Hwang;Y. Joe;H. Han
  17. J. Opt. Soc. Am. v.11 Timosenko
  18. Appl. Phys. v.36 J. J. Wotman;R. A. Evans
  19. J. Polym. Sci.: Part B: Polym. Phys. v.33 H. Han;M. Ree;C. C. Gryte
  20. Polymer v.8 H. Han;M. Ree;C. C. Gryte
  21. J. Appl. Phys. v.81 M. Ree;K. Kim;S. H. Woo;H. Chang
  22. Polyimides: Thermally Stable Polymer v.1 M. I. Bssonov;M. M. Koton;V. V. Kudryyavtsev;L. A. Laius
  23. Polym. J. v.21 Y. Oishi;K. Itoyo;M. Kakimoto;Y. Imai
  24. Macromol. Chem. Phys. v.196 no.3 S. Rhee;J. Park;B. Moon;M. Lee
  25. Polym. Bull. v.16 L. Leung;D. J. Williams;F. E. Karasz;W. J. Macknight