Photocatalytic Degradation of Trichloroethylene over Titanium Dioxides

이산화티탄에 의한 삼염화에틸렌의 광촉매 분해반응

  • Lee, Yong-Doo (School of Chemical Engineering, Pukyong National University) ;
  • Ahn, Byung-Hyun (Material Engineering, Pukyong National University) ;
  • Lim, Kwon-Taek (Imaging Science & Technology, Pukyong National University) ;
  • Jung, Yeon-Tae (Imaging Science & Technology, Pukyong National University) ;
  • Lee, Gun-Dae (School of Chemical Engineering, Pukyong National University) ;
  • Hong, Seong-Soo (School of Chemical Engineering, Pukyong National University)
  • 이용두 (부경대학교 공과대학 화학공학부) ;
  • 안병현 (부경대학교 공과대학 재료공학부) ;
  • 임권택 (부경대학교 공과대학 화상정보공학부) ;
  • 정연태 (부경대학교 공과대학 화상정보공학부) ;
  • 이근대 (부경대학교 공과대학 화학공학부) ;
  • 홍성수 (부경대학교 공과대학 화학공학부)
  • Received : 1999.07.19
  • Accepted : 1999.10.23
  • Published : 1999.11.10

Abstract

Photocatalytic degradation of trichloroethylene has been carried out with UV-illuminated $TiO_2$-coated pyrex reactor in gas phase. Three commercial $TiO_2$ oxides were used as catalysts. The effect of reaction conditions, initial concentration of trichloroethylene, concentration of oxidant and light intensity on the photocatalytic activity were examined. Anatase-type catalyst showed higher activity than rutile-type, but P-25 catalyst showed the highest activity. The degradation rate increased with the decrease of flow rate and initial trichloroethylene concentration. It was preferable to use air as an oxidant. In addition, reactants with the water vapor decreased the activity and the degradation rate increased with the increase of light intensity, but it was very low with solar light. Photocatalytic deactivation was not observed at low concentration of trichloroethylene.

Acknowledgement

Supported by : 부경대학교

References

  1. J. Air Waste Manage. Assoc. v.41 K. Wolf;A. Yazdani;P. Yates
  2. Environ. Sci. Technol. v.22 J. J. Shah;H. B. Singh
  3. Environ. Sci. Technol. v.21 C. F. Wilkinson
  4. Atmos. Environ. v.20 T. Ibusuki;K. Takeuchi
  5. J. Catal. v.136 J. Peral;D. F. Ollis
  6. New J. Chem. v.14 A. Sclafani;L. Palmisano;E. Davi
  7. J. Phys. Chem. v.94 K. M. Schindler;M. Kunst
  8. New J. Chem. v.15 E. Pelizzetti;V. Carlin;C. Minero;M. Gratzel
  9. Catal. Today. v.17 J. M. Herrmann;C. Guillard;P. Pichat
  10. J. Catal. v.31 R. I. Bickley;F. S. Stone
  11. Appl. Surf. Sci. v.72 G. B. Raupp;C. T. Junio
  12. Environ. Sci. Technol. v.25 D. F. Ollis;E. Pelizzertti;N. Serpone
  13. Appl. Catal., B v.4 S. A. Larson;J. L. Falconer
  14. Appl. Catal. B v.14 R. M. Alberici;W. F. Jardim
  15. J. Phys. Chem. v.97 K. E. Karakitsou;X. E. Verykios
  16. Faraday Discuss. Chem. Soc. v.58 N. Djeghri;M. Formenti;F. Juillet;S. J. Teichner
  17. Catal. Lett. v.4 L. A. Dipple;G. B. Raupp
  18. Environ. Sci. Technol. v.19 D. F. Ollis
  19. J. Phys. Chem. v.91 R. W. Matthews
  20. J. Am. Chem. Soc. v.103 E. Borgarello;J. Kiwi;E. Pelizzetti;M. Visca;M. Gratzel
  21. Chem. Rev. v.95 M. R. Hoffmann;S. T. Martin;W. Choi;D. W. Bahnemann
  22. J. Photochem. Photobiol. A: Chem. v.50 J. E. Fredrick;H. E. Snell;E. K. Haywood
  23. Environ. Sci. Technol. v.26 L. A. Dipple;G. B. Raupp
  24. Water Res v.20 R. W. Mattews
  25. J. Phys. Chem. v.92 N. R. Blake;G. L. Griffin