DOI QR코드

DOI QR Code

Analysis of Three Dimensional Cracks Subjected to the Mode I Loading by Using FEAM

유한요소 교호법을 이용한 모드 I 하중 하의 삼차원 균열의 해석

Kim, Tae-Sun;Park, Jae-Hak
김태순;박재학

  • Published : 2000.04.01

Abstract

The finite element alternating method is extended further for general three dimensional cracks in an isotropic body subjected to the mode I loading. The required analytical solution for a dime dimensional crack in an infinite isotropic body is obtained by solving the integral equations. In order to remove the high singularity in integration, the technique suggested by Keat et al. was used. With the proposed method several example problems are solved in order to check the accuracy and efficiency of the method.

Keywords

Stress Intensity Factor;Finite Element Alternating Method;Integral Equation;Displacement Discontinuity;Three Dimensional Crack;Surface Crack

References

  1. Murakami, Y., 1987, Stress Intensity Factors Handbook, Pergamon Press, pp. 863-867
  2. Raju I. S. and Nemann Jr. J. C., 1979, 'Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates,' Engng Frac. Mech., Vol. 11, pp. 817-829 https://doi.org/10.1016/0013-7944(79)90139-5
  3. Isida M., Noguchi H. and T. Yoshida, 1984, 'Tension and bending of finite thickness plates with a semi-elliptical surface crack, Int. J. Fracture, Vol. 26, pp. 157-188 https://doi.org/10.1007/BF01140626
  4. Vijayakumar K. and Atluri S. N., 1981, 'An embedded elliptical flaw in an infinite solid, subject to arbitrary crack-face tractions,' J. Appl. Mech., Vol. 48, pp. 88-96
  5. Forth S. C. and Keat W. D., 1996, 'Three-dimensional nonplanar fracture model using the surface integral method,' Int. J. Fracture, Vol. 77, pp. 243-262 https://doi.org/10.1007/BF00018780
  6. Nishioka T. and Atluri S. N., 1983, 'Analytical solution for embedded elliptical cracks, and finite element alternating method for elliptical surface cracks, subject to arbitrary loading,' Engng Frac. Mech., Vol. 17, pp. 247-268 https://doi.org/10.1016/0013-7944(83)90032-2
  7. Keat W. D, Erguven M. E. and Dwyer J. F., 1996, 'Modeling of 3-D Mixed mode fractures near planar bimaterial interfaces using surface integrals,' Int. J. for Num. Methods in Eng., Vol. 39, pp. 3679-3703 https://doi.org/10.1002/(SICI)1097-0207(19961115)39:21<3679::AID-NME19>3.0.CO;2-2
  8. Murakami Y., 1985, 'Analysis of stress Intensity Factors of Mode I, II and III for inclined surface cracks of arbitrary shape,' Engng Frac. Mech., Vol. 22, pp. 101-114 https://doi.org/10.1016/0013-7944(85)90163-8
  9. Keat W. D., Annigeri B. S. and Cleary M. P., 1988, 'Surface integral and finite element hybrid method for two- and three-dimensional fracture mechanics analysis,' Int. J. Fracture, Vol. 36, pp. 35-53 https://doi.org/10.1007/BF00034816
  10. Wiles T. D. and Curran J. H., 1982, 'A general 3-D displacement discontinuity method,' Proceedings of the 4th international conference on numerical methods in geomechanics, Vol. 1, ed. Balkema A. A., Rotterdam, The Netherlands, pp. 103-111
  11. Murakami Y. and Nemat-Nasser S., 1983, 'Growth and stability of interacting surface flaws of arbitrary shape,' Engng Fracture Mech., Vol. 17, pp. 193-210 https://doi.org/10.1016/0013-7944(83)90027-9
  12. Atluri, S. N., 1997, Structural Integrity and Durability, Tech Science Press, Forsyth
  13. 박재학, 김만원, Atluri, S. N., 1998, '등방성 유한판 내에 존재하는 곡선균열의 유한요소 교호법을 이용한 해석, 대한기계학회논문집(A), 제22권, 제12호, pp. 2296-2304
  14. Atluri, S. N., 1986, Computational Methods in the Mechanics of Fracture, Amsterdam, North Holland