DOI QR코드

DOI QR Code

Modeling of the Mechanical Behavior of Polycrystalline Shape-Memory Alloys by a Homogenization Method

균질화법에 의한 다결정 형상기억합금의 기계적 거동 모델링

  • Published : 2000.05.01

Abstract

We obtain a micromechanics-based Helmholtz free energy and then in the framework of irreversible thermodynamics, a kinetic relation, a martensitic nucleation criterion and the reorientation criterion of martensitic variants are obtained. These relations are valid for a three-dimensional proportional and non-proportional loadings and for a combination of mechanical and thermal loading. From the simulated pseudoelastic stress-strain relation of a single crystal with loading rate effect, polycrystalline behavior in case of proportional and non-proportional loading is predicted by a homogenization method. The obtained results are compared quantitatively with experimental results.

Keywords

Micromechanics;Shape-Memory Alloy;Phase Transformation;Pseudoelasticity;Reorientation;Homogenization

References

  1. Sun, Q. P., Goo, B. C. and Lexcellent, C, 1996, 'Micromechanics-based Modeling of Reorientation Process of a Single Crystalline Shape-Memory Alloy,' SPIE's 1996 Symposium on Smart Structures and Materials, 26-29 February 1996, San diego California, USA, pp. 2715-2746
  2. Goo, B. C, 1999, 'Modeling of the reorientation behavior of a single crystalline shape-memory alloy by a micromechanical approach,' KSME International Journal, Vol. 13, No. 2, pp. 175-182
  3. Cailletaud, G. and Pilvin P., 'Utilisation de modeles polycristallins pour le calcul par elements finis,' Vol. 3, No. 4, pp. 515-542
  4. Kroner, E. 1958, 'Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristals,' Zietschrift fur Physik, Dd. 151, pp. 504-518
  5. Rogueda-Berriet, C, 1993, 'Modelisation Thermo-dynamique du Comportement Pseudoelastique des Alliages a Memoire de Forme,' Ph. D. Thesis, $N^{circ}$ 336, Universite de Franche-Comte, France, pp. 134
  6. Hill, R., 1965, 'Continuum Micro-mechanics of Elastoplastic Polycrystals,' J. Mech. Phys. Solids, Vol. 13, pp. 89-101 https://doi.org/10.1016/0022-5096(65)90023-2
  7. Hutchinson, J. W., 1970, 'Elastic-Plastic Behaviour of Polycrystalline Metals and Composites,' Proc. Roy. Soc. Lond. A., Vol. 319, pp. 247-272
  8. Nemat-Nasser, S. and Obata, M., 1986, 'Rate-dependent, Finite Elasto-Plastic Deformation of Polycrystals,' Proc. Roy. Soc. Lond. A., Vol. 407, pp. 343-375
  9. Mura, T., 1987, Micromechanics of defects in Solids, 2nd ed. Martinus Nijhoff, Dordrecht
  10. Lemaitre, J. and Chaboche, J. C, 1985, Mecanique des Materiaux Solids, ed. Dunod, Paris, pp. 58, 60, 69
  11. Goo, B. C. and Lexcellent, C, 1996, 'Micro-mechanics-based Modeling of Two-way Memory Effect of a Single Crystalline Shape-Memory Alloy.' Acta. metall. mater. Vol. 21, pp. 727-737 https://doi.org/10.1016/S1359-6454(96)00172-3
  12. Pham, H., 1994, Analyse Thermomecanique du Comportement d'un Alliage a Memoire de Forme de Type CuZnAl, Ph. D. Thesis, Universite de Montpellier II, France, p. 91
  13. Eshelby, J. D., 1957, 'The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems,' Proc. Roy. Soc. A, Vol. 241, pp. 376-396 https://doi.org/10.1098/rspa.1957.0133
  14. Mori, T. and Tanaka, K., 1973, 'Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions,' Acta. metall. mater., Vol. 21, pp. 571-574 https://doi.org/10.1016/0001-6160(73)90064-3
  15. Kroner, E., 1961, 'Zur plastischen Verformung des Vielkristalls,' Acta metall. mater, Vol. 9, pp. 155-161 https://doi.org/10.1016/0001-6160(61)90060-8
  16. Budiansky, B. and Wu, T. T, 1962, 'Theoritical Prediction of Plastic Strains of Polycrystals,' Procd. 4th U.S. Nat. Cong. of Applied Mech., pp. 1175-1185
  17. Sun, Q. P. and Hwang, K. C, 1993, 'Micromechanics Modelling for the Constitutive Behavior of Polycrystalline Shape Memory Alloys-I. Derivation of General Relations,' J. Mech. Phys. Solids, Vol. 41, pp. 1-17 https://doi.org/10.1016/0022-5096(93)90060-S
  18. Sun, Q. P. and Hwang, K. C, 1993, 'Micro-mechanics Modelling for the Constitutive Behavior of Polycrystalline Shape Memory Alloys-II. Study of the Individual Phenomena,' J. Mech. Phys. Solids, Vol. 41, pp. 19-33 https://doi.org/10.1016/0022-5096(93)90061-J
  19. Leo, P. H., Shield, T. W. and Bruno, O. P., 1993, 'Transient Heat Transfer Effects on the Pseudoelastic Behaviour of Shape Memory Wires,' Acta metall. mater, Vol. 41, pp. 2477-2485 https://doi.org/10.1016/0956-7151(93)90328-P
  20. Wechsler, M. S., Lieberman, D. S. and Read, T. A., 1953, 'On the Theory of the Formation of Martensite,' Trans. AIME, Vol. 197, pp. 1503-1515
  21. Muller, I. and Xu, H., 1991, ' On the Pseudoelastic hysteresis,' Acta metall. mater., Vol. 39, pp. 263-271 https://doi.org/10.1016/0956-7151(91)90305-K
  22. Abeyaratne, R. and Knowles, J. K., 1993, 'A Continuum Model of a Thermoelastic Solid Capable of Undergoing Phase Tranformation,' J. Mech. Phys. Solids, Vol. 41, pp. 541-571 https://doi.org/10.1016/0022-5096(93)90048-K
  23. Bondaryev, E. N. and Wayman, C. M., 1988, 'Some Stress-Strain-Temperature Relationships for Shape Memory Alloys,' Metall. Trans. A, Vol. 19A, pp. 2407-2413 https://doi.org/10.1007/BF02645468
  24. Graesser, E. J. and Cozzarelli, F. A., 'A Proposed Three Dimensional Constitutive Model for Shape Memory Alloys,' J. Intell. mater. Systems and Structures, Vol. 5, pp. 78-89 https://doi.org/10.1177/1045389X9400500109
  25. Raniecki, B. and Lexcellent, C, 1994, '$R_L-Models$ of Pseudoelasticity and Their Specification for Some Shape Memory Solids,' Euro. J. Mech. A/Solids, Vol. 13, pp. 21-50
  26. Patoor, E., Eberhardt, A. and Berveiller, M., 1987, 'Potential Pseudoelastique et Plasticite de Transformation Martensitique dans les Mono et Polycristaux Metalliques,' Acta metall. mater, Vol. 35, pp. 2779-2789
  27. Ericksen, J. L., 1975, 'Equilibrium of Bars,' J. of Elasticity, Vol. 5, pp. 191-201 https://doi.org/10.1007/BF00126984
  28. Falk, F., 1980, 'Model Free Energy, Mechanics and Thermodynamics of Shape Memory Alloy,' Acta metall. mater., Vol 28, 1773-1780
  29. Niezgodka, M. and Sprekels, J., 1988, 'Existance of Solutions for a Mathematical Model of Structural Phase Transitions in Shape Memory Alloys,' J. Math. Methods in the Applied Sciences, Vol. 10, pp. 197-223 https://doi.org/10.1002/mma.1670100302