Low Temperature Effects on the Strength and Fracture Toughness of Membrane for LNG Storage Tank

LNG 저장탱크용 멤브레인재(STS 304강)의 강도 및 파괴인성에 미치는 저온효과

Kim, Jeong-Gyu;Kim, Cheol-Su;Jo, Dong-Hyeok;Kim, Do-Sik;Yun, In-Su

  • Published : 2000.03.01


Tensile and fracture toughness tests of the cold-rolled STS 304 steel plate for membrane material of LNG storage tank were performed at wide range of temperatures, 11 IK(boiling point of LNG), 153K , 193K and 293K(room temperature). Tensile strength significantly increases with a decrease in temperature, but the yield strength is relatively insensitive to temperature. Elongation at 193K abruptly decreases by 50% of that at 293K, and then decreases slightly in the temperature range of 193K to 111K. Strain hardening exponents at low temperatures are about four times as high as that at 293K. Elastic-plastic fracture toughness($J_c$) and tearing modulus($T_{mat}$) tend to decrease with a decrease in temperature. The $J_c$ values are inversely related to effective yield strength in the temperature range of 111K to 293K. These phenomena result from a significant increase in the amount of transformed martensite in low temperature regions.


LNG Storage Tank;J-Integral;Strain-Induced Martensitic Transformation;Elastic-Plastic Fracture Toughness;Effective Yield Strength;Tearing Modulus;Stretched Zone Width


  1. Brothers, A. J., Hill, M., Parker, M. T., Spitzig, W. A., Wiebe, W. and Wolff, U. E., 1971, 'Correlation of Fracture Toughness, $K_{IC}$, with Fractographically Derived Plastic Stretched Zone Width-A Report of ASTM E-24/II Task Group,' ASTM STP 493, pp. 3-19
  2. 오세욱, 안광주, 윤영 재, 1986, 'SB강의 평활 및 측면홈 CT시험편의 $J_{IC}$ 평가,' 대한기계학회논문집, 제10권, 제4호, pp. 494-503
  3. 中村春夫, 小林英男, 中澤 一, 1979, 'ストレッチゾ-ン幅のJ-積分による評價彈とその彈塑性破壞じん性試驗への適用,' 日本機械學會 論文集, Vol. 45, No. 392, .pp. 336-345
  4. Sreenivasan, P. R., Ray, S. K. Vaidyanathan, S. and Rodriguez, P. ,1996, 'Measurement of Stretch Zone Height and Its Relationship to Crack Tip Opening Displacement and Initiation J-value in an AISI 316 Stainless Steel', Fatigue & Fracture of Engineering Materials and Structures, Vol. 19, No. 7, pp. 855-868
  5. 小寺澤 良一, 1981, 'フラクトグラフイイとその應用', 日刊工業新聞社, pp. 39-42
  6. Suzuki, T., Kojima, H., Suzuki, K., Hasimoto, T., Koike, S. and Ichihara, T., 1976, 'Plastic Deformation and Martensitic Transformation in an Iron-base Alloy,' Scripta Metallurgica, Vol. 10, pp. 353-358
  7. Paris, P. C, Tada, H., Zahoor, A. and Ernst, H., 1979, 'The Theory of Instability of the Tearing Mode for Elastic-plastic Crack Growth', ASTM STP 668, pp. 5-36
  8. 'Standard Test Method for J - Integral Characterization of Fracture Toughness,' 1996, Annual Book of ASTM Standards, E1737-96.
  9. Huang, G. L., Matlock, D. K. and Kauss, G., 1989, 'Martensite Formation, Strain Rate Sensitivity, and Deformation Behavior of Type 304 Stainless Steel Sheet,' Metallurgical Transactions A, Vol. 20A, No. 7, pp. 1239-1246
  10. Shimada, M., Tobler, R. L., Shoji, T. and Takahashi, H., 1989, ''Size, Side-Grooving, and Fatigue Precracking Effects on J - integral Test Results for SUS 304 Stainless Steel at 4K,' Advances in Cryogenic Engineering - Materials, Vol. 34, pp. 259-266
  11. 'Standard Test Method for Tension Testing of Metallic Materials,' 1993, Annual Book of ASTM Standards, E8M-97
  12. Reed, R. P. and Tobler, R. L., 1982, 'Deformation of Metastable Austenitic Steels at Low Temperatures,' Advances in Cryogenic Engineering - Materials, Vol. 28, pp. 49~56
  13. Guntner, C. J. and Reed, R. P., 1962, 'The Effect of Experimental Variables Including the Martensitic Transformation on the Low-Temperature Mechanical Properties of Austenitic Stainless Steel,' Transactions of the ASM, Vol. 55, pp. 399-419
  14. Tobler, R. L. and Reed, R. P., 1982, 'Tensile and Fracture Properties of Manganese-modified AISI 304 Type Stainless Steel,' Advances in Cryogenic Engineering - Materials, Vol. 28, pp. 83-92
  15. 한국가스공사 최종보고서, 1995, 'LNG저장탱크용 Membrane 개발 및 응력해석,' DD-CR-031-92049509