Densification Behavior of Ti-6Al-4V Powder Compacts at Room and High Temperatures

Ti-6Al-4V 분말 성형체의 상온 및 고온에서의 치밀화 거동

Hong, Seung-Taek;Kim, Gi-Tae;Yang, Hun-Cheol

  • Published : 2000.05.01


Viscoplastic response and densification behaviors of Ti-6AI-4V powder compacts under uniaxial compression are studied at room and high temperatures with various initial relative densities and strain rates. The yield function and strain-hardening law proposed by Kim and co-workers were implemented into a finite element program (ABAQUS) to compare experimental data with finite element calculations for porous Ti6A14V powder compacts. Displacement-relative density, displacement-load relations and deformed geometry of Ti-A14V powder compacts were compared with finite element results. Density distributions in Ti-6AI-4V powder compacts were also measured and compared with finite element results.


Ti-6Al-4V Powder;Finite Element Analysis;Sinter Forging;Densification


  1. Govindarajan, R. M., 1992, Deformation Processing of Porous Metals, Doctoral thesis, University of Pennsylvania, U.S.A.
  2. Kim, K. T., 1989, 'A Temperature Dependent Strain Hardening Law,' Res. Mechanica, Vol. 26, pp. 371-382
  3. Kim, K. T. and Cho., Y. H., 1992, 'A Temperature and Strain Rate Dependent Strain Hardening Law,' Int. J. Press. Ves. & Piping, Vol. 49, pp. 327-337
  4. Naghdi, P. M., 1984, 'Constitutive Restrictions for Idealized Elastic-Viscoplastic Materials,' J. Appl. Mech.,Vol. 51, pp. 93-101
  5. SAS language: reference, Ver. 6.0, Sas Institute, 1990
  6. Borse, G. J., 1991, Fortran 77 and Numerical Methods for Engineers, PWS-KENT Pub. Co.
  7. Altan, T., Oh, S. I., and Gegel, H. L., 1983, Metal Forming (Fundamentals and Applications), American Society For Metals
  8. Doraivelu, S. M., Gegel, H. L., Gunasekera, J. S., Malas, J. C. and Morgan, J. T., 1984, 'A New Yield Function for Compressible P/M Materials,' Int. J. Mech. Sci., Vol. 26, pp. 527-534
  9. Kim, K. T, Suh, J. and Kwon, Y. S., 1990, 'Plastic Yield of Cold Isostatically Pressed and Sintered Porous Iron Under Tension and Torsion,' Powder Metall. Vol. 33, No. 4, pp. 321-326
  10. Kuhn, H. A. and Downey C. L., 1971, 'Deformation Characteristics and Plastic Theory for Sintered Powder Materials,' Int. J. Powder Metall. Vol. 7, No. 15, pp. 15-25
  11. ABAQUS User's I, II and III Manual, Ver. 5.8, Hibbitt, Karlsson, and Sorensen, 1999
  12. Aravas, N., 1987, 'On the Numerical Integration of a Class of Pressure-Dependent Plasticity Models,' Int. J. Num. Meth. Eng., Vol. 24, pp. 1395-1416
  13. Hehenberger, M., Samuelson, P., Aim, O., Nilsson, L., and Olofsson, T., 1982, 'Experimental and Theoretical Studies of Powder Compaction,' In IUTAM Conference on Deformation and Failure of Granular Materials, Delft, pp. 381-390
  14. da Silva, M. G. and Ramesh, K. T, 1997, 'The Rate-Dependent Deformation and Localization of Fully Dense and Porous Ti-6A1-4V,' Mat. Sci. Eng. A, A232,pp. 11-22
  15. Kim, K. T., 1988, 'Elastic-Plastic Response of Porous Metals under Triaxial Loading,' Int. J. Solids Structures, Vol. 24, No. 9, pp. 937-945
  16. Shima, S. and Oyane, M., 1976, 'Plasticity Theory for Porous Metals,' Int. J. Mech. Sci., Vol. 18, pp. 285-291
  17. Green, R. J., 1984, 'A Plasticity Theory for Porous Solids,' Int. J. Mech. Sci., Vol. 26, pp. 215-224
  18. Powder Metallurgy, Metals Handbook, 9th ed., Vol. 7, U.S.A., 1984
  19. Cadle, T. M. and Narasimhan, K. S., 1996, Advances in Powder Metallurgy & Particulate Materials, Metal Powder Industries Federation, Princeton
  20. Cho, H. K., Suh. J. and Kim, K. T., 1994, 'Densification of Porous Alloy Steel Preforms at High Temperature,' Int. J. Mech. Sci., Vol. 36, No. 4, pp. 317-328
  21. Harding, J., 1989, 'Constitutive Modelling of Material Mechanical Behavior at High Rates of Strain,' International Summer School on Dynamics Behavior of Materials, Ecole Centrale de Nantes, Nantes, France
  22. Meyers, M. A., 1994, Dynamic Behavior of Materials, John Wiley & Sons Inc., U.S.A.
  23. Zerilli, F. J. and Armstrong, R. W., 1995, In Shock Compression of Condensed Matter, Elsevier, Amsterdam
  24. Lewis, R. W., Jinka, A. G. K. and Gethin, D. T., 1993, 'Computer-Aided Simulation of Metal Powder Die Compaction Processes,' Powder Metall. Int., Vol. 25, No. 6, pp. 287-293
  25. Gethin, D. T., Tran, V D., Lewis, R. W. and Ariffin, A. K., 1994, 'An Investigation of Powder Compaction Processes,' Int. J. Powder Metall., Vol. 30, No. 4, pp. 385-398
  26. Abondance, D., Dellis, Ch., Baccino, R., Bernier, F., Moret, F., De Monicault, J. M., Guichard, D. and Stutz, P., 1996, 'Numerical Modelling of Near-net-shape HIPing of Ti-6A1-4V Powder,' Titanium '95 Science and Technology, The Institute of Materials, London, PP. 2634-2640
  27. Blenkinsop, P. A., Evans, W. J. and Flower. H. M., 1996, Titanium '95 Science and Technology Proceedings of the Eighth World Conference on Titanium, The Institute of Materials, London
  28. Boyer, R., Welsch, G. and Collings, E. W., 1994, Materials Properties Handbook : Titanium Alloys, ASM International, pp. 483-636
  29. Froes, F. H. and Eylon, D., 1984, Titanium Net Shape Technologies, The Metallurgical Society of AIME, California, pp. 1-120
  30. Svoboda, A., Haggblad, H. A. and Karlsson, L., 1997, 'Simulation of Hot Isostatic Pressing of a Powder Metal Component with an Internal Core,' Comput. Methods Appl. Mech. Eng. Vol. 148, pp. 299-314
  31. Redanz, P., 1998, 'Numerical Modelling of Cold Compaction of Metal Powder,' Int. J. Mech. Sci., Vol. 40, No. 11, pp. 1175-1189
  32. Greenwood, G. W., Seeds, W. E. and Yue, S., 1978, Forging and Properties of Aerospace Materials, The Materials Society, London, pp. 249-259
  33. Chockalingam, K. S. K., Neelakantan, M, Devaraj, S. and Padmanabhan, K. A., 1985, 'On the Pressure Forming of two Superplastic Alloys,' J. Mat. Sci, Vol. 20, pp.1310-1320