이방성비가 큰 직교이방성체의 반 무한 균열에 대한 동적 에너지해방률에 관한 연구

DOI QR코드

DOI QR Code

백운철;황재석
Baek, Un-Cheol;Hwang, Jae-Seok

  • 발행 : 2000.07.01

초록

When an impact stress is applied on the external boundary of double cantilever beam of orthotropic material which crack length is greater than specimen hight and anistropic ratio is very high, dyna mic energy release rate is derived, and the relationship between dynamic energy release rate and crack propagating velocity is studied. Dynamic energy release rate to static energy release rate is decreased with increasment of crack propagating velocity. The relationships between dynamic energy release rate and vertical strain have a similar pattern with those between static energy release rate and vertical strain. When normalized time(Cstla) is greater than or equal to 2, dynamic energy release rate approaches to a constant value.

키워드

이방성비;직교이방성체;전단파 속도;푸리에 변환;Wiener-Hopf 법;이중외팔보;충격적응력;동적에너지해방률;균열전파속도

참고문헌

  1. Tsai, S. W. and Hahn, H. T., 1980, Introduction to Composite Materials, TECHNOMIC Publishing Co., Inc. p. 19
  2. Jaleel, K. M. A., Kishore, N. N., and Sundararajan, 1993, 'Finite-Element Simulation of Elastic Wave Propagation in Orthotropic Composite Materials,' Materials Evaluation, pp. 830-838
  3. Baker, B. R., 1962, 'Dynamic Stresses Created by a Moving Crack,' Transactions of the ASME. Journal of Applied Mechanics, Vol. 29, pp. 449-458
  4. Paris, P. C. and Whitmore, C. F., 1959, 'Tear Resistance and the Effect of Normanial Stress,' University of Washington
  5. Sih, G. C., Paris, P. C. and Irwin, G. R., 1965, 'On Cracks in Rectilinearly Anistropic Bodies', International Journal of Fracture Mechanics, Vol. 1, pp. 189-203 https://doi.org/10.1007/BF00186854
  6. Freund, L. B., 1990, Dynamic Fracture Mechanies, Cambridge University Press
  7. Dear, J. P., 1996, 'A Fracture Model to Study the Effect of Specimen Size on Dynamic Energy Release Rates,' Fatigue & Fracture of Engineering Materials & Structures, Vol. 19, No. 5, pp. 601-610 https://doi.org/10.1111/j.1460-2695.1996.tb00996.x
  8. Freund, L. B. and Douglas, A. S., 1982, 'The Influence of Inertia on Elastic-Plastic Antiplane Shear Crack Growth,' Journal of the Mechanics and Physis of Solids, Vol. 30, pp. 59-74 https://doi.org/10.1016/0022-5096(82)90013-8
  9. Wellmar, P., Fellers, C., Nilsson, F, and Delhage, L., 1997, 'Crack-Tip Characterization in Paper,' Journal of Pulp and Paper Science, Vol. 23, No. 6, pp. J269-J275
  10. Bradley, W. B. and Kobayashi, A. S., 1970, 'An Investigation of Propagating Cracks by Dynamic Photoelasticity,' Experimental Mechanics, Vol. 10, No. 3, pp. 106-113 https://doi.org/10.1007/BF02325114
  11. Paxon, T. L. and Lucas, R. A., 1973, 'An Experimental Investigation of the Velocity Characteristics of a Fixed Boundary Fracture Model,' Dynamic Crack Propagation(ed. G. C. Sih), pp. 415-426, Noordhoff, Leyden
  12. Yoffe, E. H., 1951, 'The Moving Griffith Crack,' Philosophical Magazine, Vol. 42, No. 33, pp. 739-750
  13. Liechti, K. M. and Kanuss, W. G., 1982, 'Crack Propagation in Material Interface : II. Experiments on Mode Interaction', Experimental Mechanics, Vol. 22, pp. 383-391 https://doi.org/10.1007/BF02325405
  14. Erdogan, F., 1968, 'Crack-Propagation Theories,' Fracture-An Advanced Treastise(ed. H. Liebowitz), Vol. 2, pp. 498-590, Academic Press
  15. Sih, G. C., 1970, 'Dynamic Aspects of Crack Propagation,' Inelastic behavior of solids(eds. M. Kannien, W. Adler, A. Rosenfield and R. Jaffee), pp. 607-639, McGraw-Hill
  16. Shukla, A. and Kavaturur, M., 1997, 'Opening-Mode Dominated Crack Growth along Inclined Interfaces,' International Journal of Solids and Structures, Vol. 83, pp. 291-304 https://doi.org/10.1016/S0020-7683(97)00193-5
  17. Singh, R. P., Kavatorn, M., and Shukla, A., 1997, 'Propagation and Arrest of a Bimaterial Interface Crack Subjected to Controlled Stress Wave Loading,' International Journal of Fracture, to appear https://doi.org/10.1023/A:1007358901588
  18. Tzou, H. S. and Bao, Y., 1995, 'A Theory on Anistropic Piezothermoelastic Shell Laminates with Sensor/Actuator Application,' Journal of Sound and Vibration Vol. 184, pp. 453-473
  19. Narita, F. and Shindo, Y., 1998, 'Dynamic Anti-Plane Shear of a Cracked Piezoelectric Ceramic,' Theoretical and Applied Fracture Mechanics, Vol. 29, pp. 169-180 https://doi.org/10.1016/S0167-8442(98)00028-7
  20. Mott. N. F., 1948, 'Fracture of Metals : Theoretical Considerations,' Engineering, Vol. 165, p. 16
  21. Cotteral, B., 1964, 'On the Nature of Moving Cracks,' Journal of Applied Mechanics, Trans. A.S.M.E., Vol. 31, p. 12