MORITA EQUIVALENCE FOR NONCOMMUTATIVE TORI

  • Park, Chun-Gil (Department of Mathematics Chungnam National University)
  • Published : 2000.05.01

Abstract

We give an easy proof of the fact that every noncommutative torus $A_{\omega}$ is stably isomorphic to the noncommutative torus $C(\widehat{S\omega}){\;}\bigotimes{\;}A_p$ which hasa trivial bundle structure. It is well known that stable isomorphism of two separable $C^{*}-algebras$ is equibalent to the existence of eqivalence bimodule between the two stably isomorphic $C^{*}-algebras{\;}A_{\omega}$ and $C(\widehat{S\omega}){\;}\bigotimes{\;}A_p$.

Keywords

twisted group $C^{*}-algebras$;crossed product;tensor product;$C^{*}-algebra$ bundle;equivalence bimodule

References

  1. Acta. Math. v.140 The local structure of twisted covariance algebras P. Green
  2. Operator Algebras and Applications, Proc. Symp. Pure Math. v.38 Morita equivalence for operator algebras M. Rieffel;R.V. Kadison(ed.)
  3. J. Operator Theory v.38 The structure of twisted convolution C* -algebras on abelian groups D. Poguntke
  4. Pacific J. Math. v.71 Stable isomorphism and strong Morita equivalence of C* -algebras L. Brown;P. Green;M. Rieffel
  5. Arch. Math. v.43 The classification of rational C* -algebras M. Bramanter
  6. J. Funct. Anal. v.14 Multiplier representations of abelian groups L. Baggett;A. Kleppner