• Jung, Yoon-Tae (Department of Mathematics, Chosun University) ;
  • Kim, Yun-Jeong (Department of Mathematics, Chosun University)
  • Published : 2000.05.01


In this paper, when N is a compact Riemannian manifold, we discuss the method of using warped products to construct timelike or null future (or past) complete Lorentzian metrics on $M=(-{\infty},{\;}\infty){\;}{\times}f^N$ with specific scalar curvatures.


warped product;scalar curvature;upper and lower solution method


  1. Einstein Manifolds A. Besse
  2. Pure and Applied Mathematics Dekker v.67 Global Lorentzian Geometry J.K. Beem;P.E. Ehrlich
  3. Conformal deformation of warped products and scalar curvation functions on open manifolds
  4. Spin Geometry H.B. Lawson;M. Michelsohn
  5. J. Diff. Geo. v.10 Scalar curvature and conformal deformation of Riemannian structure J.L. Kazdan;F.W. Warner
  6. Comm. in P.D.E. v.20 Conformal scalar curvature equations on complete manifolds M.C. Leung
  7. Ann. of Math. v.101 Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature
  8. Selected Studies Warped product manifolds in relativity J.K. Beem;P.E. Ehrlich;Th.G. Powell;Th.M. Rassias(ed.);G.M. Rassias(ed.)
  9. Math. I.H.E.S. v.58 Positive scalar curvature and the Dirac operator on complete Riemannian manifolds M. Gromov;H.B. Lawson
  10. Math. I.H.E.S. v.58 Positive scalar curvature and the Dirac operator on complete Riemannian manifolds F. Dobarro;E. Lami Dozo
  11. Ann. of Math. v.99 Curvature functions for compact 2-manifolds
  12. Diff. Geom. v.27 Conformal deformation to constant negative scalar curvature on noncompact Rimannian manifolds P. Aviles;R. McOwen
  13. Trans. A.M.S. v.316 Negative scalar curvature metrics on non-compact manifolds J. Bland;M. Kalka
  14. Partial Differential Equations on Semi-Riemannian manifolds Yoon-Tae Jung
  15. Tsukuba J. Math. v.20 no.1 Constant Scalar Curvatures on Warped Product Manifolds P.E. Ehrilch;Yoon-Tae Jung;Seon-Bu Kim
  16. Ph.D. thesis Lorentzian manifolds with non-smooth and warped products T.G. Powell