Growth of Highly Purified Carbon Nanotubes by Thermal Chemical Vapor Deposition

열화학기상증착법에 의한 고순도 탄소나노튜브의 성장

  • Published : 2000.12.01

Abstract

We have grown carbon nanotubes by thermal chemical vapor deposition of $C_{2}H_{2}$ on catalytic metal deposited on silicon oxide substrates. Highly purified carbon nanotubes are uniformly grown on a large area of the silicon oxide substrates. It is observed that surface modification of catalytic metals deposited on substrates by either etching with dipping in a HF solution and/or $NH_{3}$ pretreatment is a crucial step for the nanotube growth prior to the reaction of $C_{2}H_{2}$ gas. The diameters of carbon naotubes could be controlled by applying the different catalytic metals.

References

  1. S. Iijima, Nature 354, 56 (1991) https://doi.org/10.1038/354056a0
  2. D. S. Bethune, C. H. Kiang, M. S. deVries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature (London) 363, 605 (1993) https://doi.org/10.1038/363605a0
  3. M. Terrines, N. Grobert, J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto, and D. R. M. Walton, Nature 388, 52 (1997) https://doi.org/10.1038/40369
  4. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, P. N. Provencio, Science 282, 1105 (1998) https://doi.org/10.1126/science.282.5391.1105
  5. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, D. T. Colbert, G. Scuseria, D. Tomanek, J. E. Fisher, and R. E. Smalley, Science, 273, 483 (1996) https://doi.org/10.1126/science.273.5274.483
  6. W. Z. Li, S. S. Xie, L. X. Qain, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, Science 274, 1701 (1999) https://doi.org/10.1126/science.274.5293.1701
  7. C. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, W. S. Kim, W. B. Choi, N. S. Lee, J. M. Kim, Y. G. Choi, S. C. Yu, and Y. H. Lee, Appl. Phys. Lett., 75, 1721 (1999) https://doi.org/10.1063/1.124286
  8. C. J. Lee, J. Park, S. Y. Kang, and J. H. Lee, Chem. Phys. Lett., 323, 554 (2000) https://doi.org/10.1016/S0009-2614(00)00521-2
  9. C. J. Lee, J. H. Park, and J. Park, Chem. Phys. Lett., 323, 560 (2000) https://doi.org/10.1016/S0009-2614(00)00548-0
  10. Jisoon. Ihm Hyoung Joon Chol, Nature 391, 466 (1998) https://doi.org/10.1038/35099
  11. M. M. J. Treacy, T. W. Ebbensen, and J. M. Gibson, Nature 381, 678 (1996) https://doi.org/10.1038/381678a0
  12. W. A. de Heer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995) https://doi.org/10.1126/science.270.5239.1179
  13. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, Nature (London) 388, 756 (1997) https://doi.org/10.1038/41972
  14. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Casell, and H. Dai, Science 283, 512-514 (1999). Science 283, 512 (1999) https://doi.org/10.1126/science.283.5401.512
  15. P. C. Eklund, J. M. Holden, and R. A. Jishi, Carbon 33, 959 (1995) https://doi.org/10.1016/0008-6223(95)00035-C
  16. A. M. Rao, E. Richter, Shunji Bandow, Bruce Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Science 275, 187 (1997) https://doi.org/10.1126/science.275.5297.187
  17. Y. Kawashima and G. Katagiri, Phys. Rev. B59, 62 (1999) https://doi.org/10.1103/PhysRevB.59.62