DOI QR코드

DOI QR Code

Strength Evaluation and Eailure Analysis of Unidirectional Composites Using Monte-Carlo Simulation

몬테카를로 시뮬레이션을 이용한 일방향 복합재의 강도평가 및 파손 해석

  • Published : 2000.12.01

Abstract

Tensile strength and failure process of composite materials depend on the variation in fiber strength, matrix properties and fiber-matrix interfacial shear strength. A Monte-Carlo simulation considering variation in these factors has been widely used to analyze such a complicated phenomenon as a strength and simulated the failure process of unidirectional composites. In this study, a Monte Carlo simulation using 2-D and 3-D(square and hexagonal array) model was performed on unidirectional graphite/epoxy and glass/polyester composites. The results simulated by using 3-D hexagonal array model have a good agreement with the experimental data which were tensile strength and failure process of unidirectional composites.

Keywords

Monte-Carlo Simulation;Shear-Lag Equation;Weibull Distribution;Cumulative Distribution Function;Fiber Volume Fraction;Finite Difference Method

References

  1. Choi, H. Y., Wu, H. T. and Chang, F., 1991, 'A New Approach toward Understanding Damage Mechanism and Mechanics of Laminated Composites Due to Low-Velocity Impact: Part II -Analysis,' Journal of Composite Materials, Vol. 25, pp. 1012-1038
  2. Weibull, W., 1951, 'A Statistical Distribution Function of Wide Applicability,' Journal of Applied Mechanics, Vol. 18, pp. 293-297
  3. Baxevanakis, C., Jeulin, D. and Renard, J., 1995, 'Fracture Statistics of a Unidirectional Composite,' International Journal of Fracture, Vol. 73, pp. 149-181 https://doi.org/10.1007/BF00055726
  4. Netravali, A. N., Henstenburg, R. B., Phoenix, S. L. and Schwartz, P., 1989, 'Interfacial Shear Strength Studies Using the Single-Filament-Composite Test I : Experiments on Graphite Fibers in Epoxy,' Polymer Composites, Vol. 10, No. 4, pp. 226-241 https://doi.org/10.1002/pc.750100405
  5. Shioya, M. and Takaku, A., 1995, 'Estimation of Fiber and Interfacial Shear Strength by Using a Single-Fibre Composite,' Composite Science and Technology, Vol. 55, pp. 33-39 https://doi.org/10.1016/0266-3538(95)00078-X
  6. R'Mili, M., Bouchaour, T. and Merle, P., 1996, 'Estimation of Weibull Parameters from Loose-bundle Tests,' Composites Science and Technology, Vol. 56, pp. 831-834 https://doi.org/10.1016/0266-3538(96)00028-0
  7. Stumpf, H., Schwartz, P., Lienkamp, M. and Schulte, K., 1995, 'S-Glass/Kevlar-149 Hybrid Microcomposites in Stress-Rupture:A Monte Carlo Simulation,' Composite Science and Technology, Vol. 54, pp. 211-221 https://doi.org/10.1016/0266-3538(95)00053-4
  8. Hedgepeth, J. M. and Dyke, P. V., 1967, 'Local Stress Concentrations in Imperfect Filamentary Composite Materials,' Journal of Composites Materials, Vol. 1, pp. 294-309 https://doi.org/10.1177/002199836700100305
  9. William, H. P., Saul, A. T., William, T. V., Brian, P. F., 1992, 'Numerical Recipes,' Cambridge University Press
  10. Hull, D., 1981, 'An Introduction to Composite Materials,' Cambridge University Press
  11. Yuan, J., Xia, Y. and Yang, B., 1994, 'A Note on the Monte Carlo Simulation of the Tensile Deformation and Failure Process of Unidirectional Composites,' Composite Science and Technology, Vol. 52, pp. 197-204 https://doi.org/10.1016/0266-3538(94)90205-4
  12. Lienkamp, M. and Schwartz, P., 1993, 'A Monte Carlgo Simulation of The Failure of a Seven Fiber Microcomposites,' Composite Science and Technology, Vol. 46, pp. 139-146 https://doi.org/10.1016/0266-3538(93)90169-H
  13. Stumpf, H. and Schwartz, P., 1993, 'Monte Carlo Simulation of the Stress-Rupture of Seven-fiber Microcomposites,' Composite Science and Technology, Vol. 49, pp. 251-263 https://doi.org/10.1016/0266-3538(93)90107-R
  14. Goda, K. and Phoenix, S. L., 1994, 'Reliability Approach to the Tensile Strength of Unidirectional CFRP Composites by Monte Carlo Simulation in a Shear-lag Model,' Composites Science and Technology, Vol. 50, pp. 457-468 https://doi.org/10.1016/0266-3538(94)90054-X
  15. Goda, K. and Fukunaga, H., 1991, 'Evaluation of Tensile Strength of Unidirectional Fiber Reinforced Metal Matrix Composite Materials Using Monte Carlo Simulation,' Journal Society of Material Science (in Japanese), Vol. 40, No. 405, pp. 42-48
  16. Oh, K. P., 1979, 'A Monte Carlo Study of the Strength of Unidirectional Fiber-Reinforced Composites,' Journal of Composites Materials, Vol. 13, pp. 311-328 https://doi.org/10.1177/002199837901300405
  17. Fukuda, H. and Chou, T. W., 1982, 'Monte Carlo Simulation of the Strength of Hybrid Composites,' Journal of Composites Materials, Vol. 16, pp. 371-385 https://doi.org/10.1177/002199838201600502
  18. Wagner, H. D., Phoenix, S. L. and Schwartz, P., 1984, 'A Study of Statistical Variability in the Strength of Single Aramid Filaments,' Journal of Composites Materials, Vol. 18, pp. 312-337 https://doi.org/10.1177/002199838401800402
  19. 안정주, 권재도, 김상태, 1996, '몬테카를로 시뮬레이션에 의해 SiCw/AI 복합재료의 피로수명 예측,' 대한기계학회논문집 (A), Vol. 20, No. 5, pp. 1552-1561
  20. Kimpara, I., Ozaki, T. and Takada, S., 1985, 'Simulation on Tensile Failure Process of Unidirectional Hybrid FRP,' Journal Society of Material Science (in Japanese), Vol. 34, No. 378, pp. 280-287
  21. Hamada, H., Oya, N., Yamashita, K. and Maekawa, Z. I., 1997, 'Tensile Strength and Its Scatter of Unidrectional Carbon Fiber Reinforced Composites,' Journal of Reinforced Plastics and Composites, Vol. 16, No. 2, pp. 119-130 https://doi.org/10.1177/073168449701600202
  22. Rosen, B. W., 1964, 'Tensile Failure of Fibrous Composites,' AIAA Journal, Vol. 2, No. 11, pp. 1985-1991
  23. Zweben, C., 1968, 'Tensile Failure of Fibrous Composites,' AIAA Journal, Vol. 6, No. 12, pp. 2325-2331
  24. Zweben, C. and Rosen, B. W., 1970, 'A Statistical Theory of Material Strength with Application to Composite Materials,' Journal of Mechanical Physics and Solids, Vol. 18, pp. 189-206 https://doi.org/10.1016/0022-5096(70)90023-2