A Numerical Study on the Dynamic Characteristics of Power Metal using Split Hopkinson Pressure Bar

홉킨스바 장치를 이용한 분말금속의 동적 특성에 관한 수치해석적 연구

Hwang, Du-Sun;Lee, Seung-U;Hong, Seong-In

  • Published : 2000.12.01


Dynamic characteristics of powder metal is very important to mechanical structures requiring high strength or endurance for impact loading. But owing to distinctive property of powder metal, that is relative, it has been investigated restrictively compared to static characteristics. The objectives of this study is to investigate dynamic characteristics of powder metal and compare it to a fully density material. To find the characteristics, an explicit finite element method is used for simulation of Split Hopkinson Pressure Bar experiment based on the stress wave propagation theory. We obtained a dynamic stress-strain relationship and dynamic behavior of powder metal, as well as the variation of material properties during dynamic deformation.


Powder Metal;Relative Density;Explicit Finite Element Method;Dynamic Material Characteristics;SHPB(Split Hopkinson Pressure Bar)


  1. 조상순, 강우종, 허훈, 정동택, 1997, '새로운 Tension Split Hopkinson Bar를 이용한 박판의 고속인장시험,' 대한기계학회논문집 A, Vol. 21, No. 12(ISSN 1226-4873), pp. 2209-2219
  2. Valle, G. E.and Shukla, A., 1996, 'A Study of the Dynamic Behavior of Elastomeric Materials Using Finite Elements,' ASME J. Eng. Mat. Tech., Vol. 118, Oct., pp. 503-508
  3. Zhdanovich, G.M., Translated from Teorize Pressovaniva Metzllichaskikli Poroshkov, pp1-262(1969) by the Foreign Technology Division, Wright-Patterson Air Force Base, Ohio, U.S.A. (29 June 1971)
  4. 이승우, 홍성인, 1998, '홉킨슨 압축봉에서의 동적 재료특성에 관한 수치해석적 연구,' 대한기계학회 논문집 A권, 제24권, 제6호, 논문집, pp. 129-132
  5. Follansbee, P. S.and Frantz, 1983, 'Wave Propagation in the Split Hopkinson Pressure Bar,' ASME J. Eng. Material Technology, Vol. 105, pp. 61-66
  6. 황인평, 1995, '홉킨스 바 장치를 이용한 고순도 전기동의 거동에 관한 연구,' 충남대학교 석사학위 논문
  7. Kumar, D. Roshan, Kumar, R. Krishna, Philp, P. K., 1999, 'Simulation of Dynamic Compaction of Metal Powders,' J. Applied Physics, Vol. 85, No. 2, pp. 767-775
  8. 황두순, 남경오, 이승우, 홍성인, 1999, '익스플리시트 유한요소법을 이용한 분말금속의 동적 특성에 관한 연구,' 대한기계학회 충청지부 추계학술대회 논문집, pp. 102-107
  9. Doraivelu, S.M., Gegel, H. L., Gunasekera, J.S., Malas, J. C., Morga, J. T., 1984, 'A New Yield Function for Compressible P/M Materials,' Int. J. Mech. Sci., Vol. 26, NO. 9/10, pp. 527-535
  10. 이승우, 1983, '3차원 유한요소법을 이용한 분말금속 성형과정의 해석에 관한 연구,' 충남대학교 석사학위논문
  11. Shima, S. and Oynane, 1976, 'Plasticity Theory of Porous Metals,' Int. J. Mechanical Science, Vol. 8, pp. 285-291
  12. Corapcioglu, Y. and Uz, T., 1978, 'Constitutive Equation for Plastic Deformation of Porous Materials,' J. Powder Technology, Vol. 21, p. 269
  13. Kuhn, H. A. and Downey, C. L., 1971, 'Deformation Characteristics and Plasticity Theory of Sintered Powder Materials,' Int. J. Power Metall., Vol. 7, p. 15
  14. Gurson, A. L., 1975, 'Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Nucleation, Growth and Interaction,' Ph. D. Thesis, Brown University, Providence, RI
  15. Drucker, D. C., and Prager, W., 1952, 'Soil Mechanics and Plastic Analysis on Limit Design,' Q. Appl. Math., Vol. 10, p. 157
  16. Suh, N. P., 1969, 'A Yield Criterion For Plastic, Frictional, Work Hardening Granular Materials,' Int. J. Powder Metall., Vol. 5, No. 1, p. 69