DOI QR코드

DOI QR Code

Densification Behavior of Titanium Alloy Powder Under Hot Pressing

고온 금형압축시 티타늄 합금 분말의 치밀화 거동

Yang, Hun-Cheol;Kim, Gi-Tae
양훈철;김기태

  • Published : 2000.12.01

Abstract

Densification behavior of titanium alloy powder was investigated under hot pressing at various pressures and temperatures. Experimental date were obtained for densification of titanium alloy powder under an instantaneous loading and subsequent creep deformation during hot pressing. The constitutive models of Fleck et al. and the modified Gurson were employed for thermo-phastic deformation under the instantaneous loading and that f Abouaf and co-workers for creep deformation of titanium alloy powder during hot pressing. By implementing these constitutive equations into a finite element program(ABAQUS), finite element results were compared with experimental data during hot pressing. To investigate the effect of friction between the power and die wall, density distributions of power compacts were measured and compared with finite element calculations. Finite element results from the models of Fleck et al. and the modified Gurson agreed reasonably good with experimental data for densification and density distribution of titanium alloy powder under the instantaneous loading during hot pressing. Finite element results from the model of Abouaf and co-workers, however, somewhat overestimate experimental data for creep deformation of power compacts during hot pressing.

Keywords

Titanium Alloy Powder;Hot Pressing;Densification;Finite Element Analysis

References

  1. Altan, T., Oh, S. I. And Gegel, H. L., 1983, Metal Forming: Fundamentals and Application, American Society for Metals, Metals Park, OH, pp. 1-353
  2. Boyer, R., Welsch, G. and Collings, E. W., 1994, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, pp. 483-636
  3. Han, H. N., Lee, Y. G., Oh, K. H. and Lee, D. N., 1996, 'Analysis of Hot Forging of Porous Metals,' Mat. Sci. Eng. A, A206, pp. 81-89 https://doi.org/10.1016/0921-5093(95)10000-8
  4. Abondacse, D., Baccino, R., Bernier, F., Moret, F., De Monicault, J. M., Guichard, D., Stutz, P. and Bouvard, D., 1994, 'Numerical Modelling of Near-Net-Shape HIPing of TA6V Powder,' Proceeding of Powder Metallurgy, pp. 797-800
  5. Becker, R., Needleman, A., Richmond, O. and Tverggaard, V., 1988, 'Void Growth and Failure in Notched Bars,' J. Mech. Phys. Solids, Vol. 36, No. 3, pp. 317-351 https://doi.org/10.1016/0022-5096(88)90014-2
  6. Abondacse, D., Dellis, Ch., Baccino, R., Bernier, F., Moret, F., De Monicault, J. M., Guichard, D. and Stutz, P., 1996, 'Numerical Modelling of Near-Net-Shape HIPing of Ti-6A1-4V Powder,' Titanium '95 Science and Technology, The Institute of Materials, London, pp. 2634-2640
  7. Kim, J. H., Han, D. B. and Kim, K. T., 1996, 'High Temperature Creep Behavior of Cr3C2 Ceramic Composite,' Mat. Sci. Eng. A., A212, pp. 87-93 https://doi.org/10.1016/0921-5093(96)10167-2
  8. ABAQUS User's I, II and III Manual, 1998, Ver. 5.8, Habbitt, Karlsson and Sorensen, U.S.A.
  9. Powder Metallurgy, Metals Handbook, 9th ed., 1984, American Society for Metals, Metals Park, OH, Vol. 7, pp. 25-51
  10. Besson, J. and Evans, A. G., 1992, 'The Effect of Reinforcements on the Densification of a Metal Powder,' Acta Metall. Mater., Vol. 40, No. 9, pp. 2247-2255 https://doi.org/10.1016/0956-7151(92)90143-3
  11. Wilkinson, D. S. and Ashby, M. F., 1975, 'Pressure Sintering by Sintering by Powder Law Creep,' Acta Metall., Vol. 23, No. 11, pp. 1277-1285 https://doi.org/10.1016/0001-6160(75)90136-4
  12. Kwon, Y. S., Lee, H. T. and Kim, K. T., 1997, 'Analysis for Cold Die Compression of Stainless-Steel Powder,' J. Eng. Mat. Tech., Vol. 119, pp. 366-373
  13. Besson, J. and Abouaf, M., 1991, 'Behavior of Cylindrical HIP Container,' Int. J. Solids Structure, Vol. 28, No. 6, pp. 691-702 https://doi.org/10.1016/0020-7683(91)90150-E
  14. Kim, K. T., Kim, H. G. and Jang, H. M., 1998, 'Densification behavior and grain growth fo zirconia powder compact under high temperature,' Int. J. Eng. Sci., Vol. 36, pp. 1295-1312 https://doi.org/10.1016/S0020-7225(98)00016-0
  15. Abouaf, M., Chenot, J. L., Raisson, G. and Bauduin, P., 1998, 'Finite Element Simulation of Hot Isostatic Pressing of Metal Powder,' Int. J. Num. Mech. Eng., Vol. 25, pp. 191-212 https://doi.org/10.1002/nme.1620250116
  16. Kim, K. T. and Lee, H. T., 1998, 'Effect of Friction between Powder and A Mandrel on Densification of Iron Powder during Cold Isostatic Pressing,' Int. J. Mech. Sci., Vol. 40, No. 6, pp. 507-519 https://doi.org/10.1016/S0020-7403(97)00063-5
  17. Tverggard, V., 1981, 'Influence of Voids on Shear Band Instabilities under Plane Strain Conditions,' Int. J. Fracture, Vol. 17, No. 4, pp. 389-407 https://doi.org/10.1007/BF00036191
  18. Tverggard, V., 1982, 'On Localization in Ductile Materials Containing Spherical Voids,' Int. J. Fracture, Vol. 18, pp. 237-252 https://doi.org/10.1007/BF00015686
  19. Gurson, A. L., 1997, 'Continum Theory of Ductile Rupture by Void Nucleation and Growth-Part 1. Yield Criteria and Flow Rules for Porous Ductile Media,' J. Eng. Mat. Tech., Vol. 99, pp. 2-15
  20. Song, M. C., Kim, H. G. and Kim, K. T., 1996, 'Creep Densification of Copper Powder Compact,' Int. J. Mech. Sci., Vol. 38, No. 11, pp. 1197-1208 https://doi.org/10.1016/0020-7403(96)00011-2
  21. Kim, H. G. and Kim, K. T., 1999, 'Densification Behavior of Nanocrystalline Titania Powder Compact under Temperature,' Acta Mater., Vol. 47, No. 13, pp. 3561-3570 https://doi.org/10.1016/S1359-6454(99)00230-X
  22. Doraivelu, S. M., Gegel, H. L., Gunasekera, J. S., Malas, J. C. and Morgan, J. T., 1984, 'A New Yield Function for Compressible P/M Materials,' Int. J. Mech. Sci., Vol. 26, pp. 527-535 https://doi.org/10.1016/0020-7403(84)90006-7
  23. Fleck, N. A., Kuhn, L. T. and McMeeking, R. M., 1992, 'Yielding of Metal Powder Bonded by Isolated Contacts,' J. Mech. Phys. Solids, Vol. 40, No. 5, pp. 1139-1162 https://doi.org/10.1016/0022-5096(92)90064-9
  24. Green, R. J., 1972, 'A Plasticity Theory for Porous Solids,' Int. J. Mech. Sci., Vol. 14, pp. 215-224 https://doi.org/10.1016/0020-7403(72)90063-X
  25. Shima, S. and Oyane, M., 1976, 'Plasticity Theory for Porous Metals,' Int. J. Mech. Sci., Vol. 18, pp. 285-291 https://doi.org/10.1016/0020-7403(76)90030-8
  26. 양훈철, 김기태, 2000, '열간 등가압 소결에 의한 Ti-6A1-4V 분말의 치밀화 거동,' 대한기계학회논문집(A), 제24권, 제2호, pp. 394-402
  27. Kuhn, H. A. and Downey, C. L., 1971, 'Deformation Characteristics and Plasticity Theory of Sintered Powder Metal Materials,' Int. J. Powder Metall., Vol. 7, pp. 15-25
  28. Lewis, R. W., Jinka, A. G. K. and Gethin, D. T., 1993, 'Computer-Aided Simulation of Metal Powder Die Compaction Processes,' Powder Metall. Int., Vol. 25, No. 6, pp. 287-293
  29. Gethin, D.T., Tran, V. D., Lewis, R. W. and Ariffin, A. K., 1994, 'An Investigation of Powder Compaction Processes,' Int. J. Powder Metall., Vol. 30, No. 4, pp. 385-398
  30. Froes, F. H. and Eylon D., 1990, 'Powder Metallurgy of Titanium Alloys,' International Materials Reviews, Vol. 35, No. 3, pp. 162-182
  31. Shaik, G. R. and Milligan, W. W., 1997, 'Consolidation of Nanostructured Metal Powders by Rapid Forging: Processing, Modelling, and Subsequent Mechanical Behavior,' Met. Mat. Trans. A, Vol. 28, pp. 895-904 https://doi.org/10.1007/s11661-997-0077-7
  32. Evans, R. W., 1993, 'Modelling of the Hot-Working of High Performance Alloys,' Key Eng. Materials: Second ASM Paris Conference, Trans Tech Publications, Switzerland, Vol. 77-78, pp. 227-240
  33. Froes, F. H. and Eylon, D., 1986, Titanium Rapid Solidfication Technology, Metallurgical Society, Pennsylvania, U.S.A., pp. 1-322