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A GENERALIZATION OF GIESEKER’S LEMMA

SunG-OcK KiMm

ABSTRACT. We generalize Gieseker’s lemma and use it to compute
Picard number of a complete intersection surface.

1. Introduction

We work over the complex numbers C. In [2], J. Harris gave a proof
of the following Gieseker’s lemma using monodromy:

GIESEKER'S LEMMA. Let W C H%(Op:(d — 1)) be a linear system
and V C H°(Op:(d)) be a linear system containing the image of W
under the multiplication map u

u: W@ H(Op(1)) — H(Op: (d)).

Then either dimV > dimW +2 or |V| equals the complete series |Op: (I—
1)| plus d — 1 + 1 fixed points, where [ = dimV.

Though this looks simple, it has been used explicitly and implicitly
in the proofs of important results. (See, for example, [6]). We generalize
the lemma as follows:

THEOREM 1. Let2<d; <---<dp,—2,m>3andE = @;.”;12 Op: (d;).
Let W C H°(P', E) denote a subspace such that the evaluation map
[ W®0P1,m — E;

is surjective for all z € P! and codimW > 1. Let u denote the multi-
plication map
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p: W HOP, Op (1)) — H(PY, E® Opi(1)).

Then dim(imu(W ® HO(P!,0p(1))) > m +n — 1, where m =
dimW > 1.

We will give an elementary proof of this theorem. As an application
of this theorem, we will show that the Picard number of a general
complete intersection surface in P™ containing a line is 2.

2. Proof of the Theorem 1

(GENERAL STRATEGY. We will show that a basis of W can be di-
vided into at least n — 1 disjoint subsets with the property that the
map p operates on each disjoint subset creating 1 extra dimension,
resp. Here, we note that for the above map f to be surjective as in the
hypothesis, dimW > n — 1.

NOTATION. Let 2z, 21 denote homogeneous coordinates for P!, Let
B ={v1,--. ,um} be a basis of W in the Theorem 1. Each v; can be
written as

o digl 2 n—2
v = 25°2 (P, P - - PY ),
where neither zy nor z; is a common factor of pl,p?,... ,p,?_z. We

denote by
pi = (5,08, PF 7).

Here, p¥ is a homogeneous polynomial of degree dy, — (ip + 4;) for i =
l,...,m,andk=1,... ,n—2.

DEFINITION 1. Define for v;,v; € B, # j,
Edge(m,vj) =1 if io—Jo =241 — %1 and p:‘ = p;
Edge(v;,v;) =0 otherwise.

Note that Edge(v;, v;) = Edge(v;,v;) and that for each v; € B, there
can be at most two v;’s in B such that Edge(v;,v;) = 1.
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DEFINITION 2. For a v; € B, we define a subset [v;] of B recursively
as follows:

(1) U € [Ul].

(2) v; € [vg] if Edge{v;,v;) =1, and v; € B — [vy].

(3) v; € [v] if Edge(vg,v;) = 1 for some vy € [w1], v; € B — [vy].

(4) Repeat (3) until there remains no such v;’s.

Facrs. One can easily observe the following facts:
1. Each element vy, of [v;] can be written as v = z5 2™ p;. That is, k,
and k; depend on vk, but p} = p} for any v € [v].
2. If there is a vy € B — [v}], one can construct another subset [vg]. By
construction, [v;] is disjoint with [vx]. Also, for any element v; of [v]
and any element v; of [ux], znv; # z,v;, where h,v € {0,1}. Thus W
can be divided into disjoint subset [v;]’s.
3. The map u operates on each disjoint [v;] creating 1 extra dimension
respectively. That is, let V; C H°(P!, E) be the subspace generated by
the elements of [v;]. Then dimV; = |[v;]| = the number of elements of
v; and

dim (imu(V; @ H(B', Op (1) ))) = dimV; + 1.

Moreover, if B is the union of disjoint subsets, say [v],... , [vk], then
dim (im,u(W ® HY(P', Op: (1) )))

k
= Z dim(im,u(Vi ® Ho(P!, OPl(l))))

i=1

k
=3 (vl + 1) = dimW + .

=1

From the above facts, we can see that to prove the theorem, all we
need to show is the following:

LEMMA 1. There are at least n — 1 disjoint subset [v;]’s in B.
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Proof. We will show this for n = 3 and then for any n > 4. Though
the proof need not be separated for these 2 cases, we provide the proof
for n = 3 as an illustration for the idea of the proof.

A. For n = 3, we claim that B is the union of at least 2 disjoint
subsets, say, [v1] and [vg]. If not, then B = [vy] and v; = zi°2i'p},
1 <1i < m, and p} is a homogeneous polynomial which is not divisible
by either zg or z;. Moreover, v;’s can be rearranged so that

a+m _B_1
m = ZO Zl pl

vy = za-i-m 1 }’3+1pi

_ e+l .6+m 1.1
Un =25 21 P

for an integer @ > —1 and for some nonnegative integer 3.

If deg p! > 1, then a zero of p} is a base point of W, at which the
map f is not surjective.

If deg p; = 0, then m + a + 3 = d;. For the evaluation map f to
be surjective at P = (1,0) and at @ = (0,1), we should have 3 = 0
and a = —1. Hence we get m — 1 = dy, i.e., codimW = 0, which is a
contradiction. O

B. If n > 4, we will show that B is a union of at least n — 1 disjoint
['U,']’S.

If B is a union of k disjoint [v;]’s, then without loss of generality, we
may assume that B = U¥_, [v;] and

_ [, 0B T-—1 6 +1, 'Y1 o) ’71+01 *
[’UIJ = {zo 2111’1,7-0 TPl - P1}

_ .k ,0 Ye—1 6 +1 Ye— Ok Sk tox _*
[vx] = {zoszpk’zok LSRR TTUREY Al *Pr}

for nonnegative integers -;, §;, and «;, 1 < i < k satisfying the following
condltlons

(a) XF (ai+1) =
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(b) vi —a; >0
(c) Fix a j with 1 < j < n — 2. Then,
i+ 0; + degpﬁ = d; for any 7 with p] # 0.

We will show £ >n — 1.
(1} If K <n—3, then, at P = (20, 21) with zg # 0 and z; # 0, the rank
of the evaluation map f is at most ¥ < n — 3, which contradicts the
hypothesis.
(2) If K = n— 2, then we will find a point where the map f is not
surjective. We consider the following matrix:

-2
i pz e pt )
py P& - ph
: 2. .
Prn.2 Phoa - Pni

(1) If deg p! > 0 for some ¢ and j, then at the zeros of the determinant
of the above matrix, the evaluation map f is not surjective. ‘

(ii) If deg pJ = O for every i and j in {1,...,n—2}, then either p! =0
or pz == 1. If the rank of the above matrix is < n — 2, then the map f
is not surjective at any point P = (zp, 21} where 25 # 0 and 21 # 0. So
it contradiets the hypothesis of the theorem and the proof is done.
But, for the above matrix to be of rank n — 2, the determinant of the
matrix should not be equal to 0. This can happen when

e S
for at least one permutation (j; ... jn—2) of {1,...,n — 2}. In this case,

deg p! = 0 implies d;, = v; +6; by the above condition (c). For the map
f to be surjective at {1,0) and at (0,1), §; =0 for all ¢ and v; = ;. So

n—2 n—2
m=Y (x+1)=Y (n+1)
i=1 .9 =1 5 9
=Y (dj, +1) = (di+1).
i=1 i=1
This implies codimW = 0, which is a contradiction. d
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3. An Application

Using, the above theorem, we will show that the Picard number of
a general complete intersection surface S containing a line in P is 2,
that is, Pic(S) is generated by the hyperplane section curve and the
line.

Let 2<dy <dp < - <dpoand Y, 4, 45 d, o, = { smooth com-

plete intersection surfaces of type (d;,... ,d,—2) in Pn}. The Noether-
Lefschetz locusis £ = {S € Yo 4, dy. - d,_, | Pic(S) EZ }.

THEOREM 2. Let Y0 d; > n+2 andn > 3. Let Z; denote
an irreducible component of ¥ whose generic member contains a line.
Then, for a general § in Z;, the Picard number is 2.

The word “general” is used in the sense that a property is said to
hold at a general point of a projective variety V if the property holds at -
all the points of V but the points in a countable union of subvarieties
of V.

It is known that the codimension of Z; is > Y777 d; — n{cf. [3]).

Using deformation theoretic technique, Lopez [5] figured the gen-
erators of the Picard group of a general complete intersection surface
containing a fixed curve. In [5], he showed that for a general projec-
tively Cohen-Macaulay surface X in P* defined by the maximal minors
of a matrix with no zeros, Pic(X) = Z? generated by Ox (1) and Kx
unless X is the Castelnuovo or Bordiga surface. He [6] also gave a new
proof of the above Theorem 2 for a general surface in P® containing
a plane curve, which is infinitesimal Hodge theoretic and completely
different from the one in {5].

Following Lopez’s idea for the case n = 3 in [6], we can reduce
Theorem 2 to Theorem 1.

Proof of Theorem 2. Let zg,. .. , z, denote homogeneous coordinates
for P*. (' be the line with equations z9 = 21 = -+ = 2z,_2 = 0
in P, Fo.r a generic § € Zp, let § = ﬂ:-:f F; = 0}, where F; =
Z;:{? z;G = 0 and F} is an irreducible homogeneous polynomial of

degree d;, i = 1,... ,n — 2. Without loss of generality, we may assume
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that ﬂ;‘ {F; = 0} are smooth for k = 1,... ,n — 2, and that, for
i=1,...,n-2 (NCHC =0}nC =¢.

Let H;,_];m(S) CH I(S, Q11) denote the primitive (1, 1)-cohomology
of S. Let L = 0g(C). v=c1(L) € H;r:m(S) defines an extension M of
the tangent sheaf ©g of § by the structure sheaf Og, i.e. M is defined

by the exact sequence
0—- 05— Mg—05—0

with the extension class y. The induced map H(S,0g) — H?(S,05s)
is given by the cup product with . By dualizing the map,

HI(S,GS ®H11 (S) HZ(S:OS)a

prim
we get
HY(S,05)® HX0(8) — HLL (&)~

prim

Let E = ®}-20p(d:), E(k) = E®QOpn (k), and v denote the number
v=S"2di—n—1.

By algebraic identifications (cf. [1] or [5] for n = 3, [3] for n > 4),
the above map is the multiplication map

H(P", B) _ HO(P",Op(v)) _ H°(P" E(v))
J I J!

where J, I, J' denote the appropriate subspaces; For n = 3, J is
the Jacobian ideal of S in degree d1 and I = 0. Forn > 4, I =
imHO (", & Opn (v — d) = {1} asFilas € HO(B, Opn (v~ )},
a; = 0 for v—d; <0. J is generated by {—z;eill <i<n-2,0<j<n}
Here e; = (e},..., e?_Q), b =1ifi =k, e¥ = 0 otherwise (For precise
definitions, see [3]).

Let W ¢ H'(S, ©g) be the Zariski tangent space to Z; keeping v of
type (1,1). Then the image of W), ® H*°(S) is contained in (). Let
W, be the preimage of W/ under the projection H(P"*, E} — H(P".E)

J b]
0 mn
and R = w_ﬁgﬁﬂ_ Then we have a map

A: W, ® H(P", Opn(v)) — H°(B", E(v)) — Ry

It is known that the evaluation map W, ® Opn , — E; is surjective for
every x € P*{cf. [3]).
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LEMMA 2. codimp, imA(W, & HO(P"™, Opa () < 1.

Proof. Let W = im(W, ® H°(P", Op~(v)) — H%(P", E(v))) and R
= HO° (IF’", E(v)) By definition, J* C W and hence it is enough to
show codimgW < 1.

Let R|¢: be the restriction of R to C, and W|¢, W, |, the restriction
of W, W, to C, resp. Recall that C = P! with homogeneous coordinates
Zr—1y Zne

Note R|c = HY(P!, E(v) ® Op1), and Wl = im(W,|c ® HO(P?,
Op (v)) — R|c). Let Ic be the ideal sheaf of C, and I(C) = im(H°
(P*, I ® E) — H°(E)). By construction, I{C) C W., and this implies
codimgW = codimR|cW|c. So it suffices to show codimR|cW[c < 1.

On the other hand, {zx(G7,... ,G?"2)|0 <j<n—-2%k=n-—
1,n} C W,|c and so W,|c = W' ® HO(P!,0p (1)) for some W' C
HO(P!, E ® Opi(—1)) containing {(G},... ,G}7%)|0<j <n—2} So
the evaluation map of W’ is surjective and dimW* > n—1. By applying
Theorem 1 (v + 1) times,

dimW|ec = dim(im(W’@Ho(IPl,Opx (u+1)))) >n~14{n—1){r+1).

Hence codimpg,Wic < 1. O

The rest of the proof of the theorem uses the idea of Lopez’s proof
for n = 3 which we restate: By the semicontinuity theorem, it is enough
to prove that for each 7' € H;;,im(S) — Cv, there exists a deformation
n € W, such that, when we deform S in the direction of 5 to a surface
S’, the class v is not of type (1,1). That is, it is enough to show
W, ¢ W,.. By Lemma 2, 4" € im(W, ® H%(P", Opn (v))). Therefore,
if ¥ # 0 and W, C W.,, then

Y € im(Wy @ H*(P", Op(v))) C im(W, @ HO(P™, Opn (1)) C (v)*,

which is a contradiction. . O
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