DICKSON INVARIANTS HIT BY THE STEENROD SQUARE

  • Tan, K.F. (DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY) ;
  • Xu, Kai (DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY)
  • Published : 2000.11.01

Abstract

Let $D_3$ be the Dickson invariant algebra of $F_2[X_1,\; X_2,\; X_3] \; by \; GL(3,\; F_2)$. In this paper, we provide an elementary proof of Theorem 3.2 of [2]; each element in $D_3$ is hit by the Steenrod square in $F_2[X_1,\; X_2,\; X_3]$.

References

  1. Proc. Amer. Math. Soc. v.113 The action of the Steenrod squares on the modular invariants of linear growps Hung, N. H. V.
  2. Trans. Amer. Math. Soc. v.10 Spherical classes and the algebraic transfer Hung, N. H. V.
  3. Math. Z. v.231 The weak conjecture on spherical classes Hung, N. H. V.
  4. Vietnam J. Math. v.23 The action of the mod p Steenrod operations on the modular invariants of linear groups Hung, N. H. V.;Minh, P. A.
  5. Math. Proc. Cambridge Philos. Soc. v.123 Hit polynomials and conjugation in the dual Steenrod algebra Silverman, J.
  6. Proc. Amer. Math. Soc. v.111 On the action of Steenrod squares on polynomial algebras Singer, W. M.
  7. Hit polynomials, Dickson invariants and related topics Tan, K. F.
  8. Math. Proc. Cambridge Philos. Soc. v.105 Steenrod squares of polynomials and the Peterson conjecture Wood, R. M. W.
  9. Bull. London Math. Soc. v.30 Problems in the Steenrod algebra Wood, R. M. W.