Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 37 Issue 4
- /
- Pages.791-802
- /
- 2000
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
STABILITY THEOREMS OF THE OPERATOR-VALUED FUNCTION SPACE INTEGRAL ON $C_0(B)$
- Ryu, K.-S (DEPARTMENT OF MATHEMATICS, HANNAM UNIVERSITY) ;
- Yoo, S.-C (JAENEUNG COLLEGE)
- Published : 2000.11.01
Abstract
In 1968, Cameron and Storvick introduce the definition and the theories of the operator-valued function space integral. Since then, the stability theorems of the integral was developed by Johnson, Skoug, Chang etc [1, 2, 4, 5]. Recently, the authors establish the existence theorem of the operator-valued function space [8]. In this paper, we will prove the stability theorems of the operator-valued function space integral over paths in abstract Wiener space
File
References
- Gaussian Random Field Stability theorems for the operator-valued function space integral K. S. Chang;K. S. Ryu
- Supplemento ai Rendiconti del Circolo Mathematico di Palermo. Serie Ⅱ v.17 Stability theorems for the Feynman integral ; The L(L₁(R), Co(R)) theory J. S. Chang
- Pacific J. Math. v.130 Scale-invariant measurability in abstract Wiener space D. M. Chung
- Supplemento ai Rendiconti del Circolo Mathematico di Palermo. Serie Ⅱ v.8 Stability theorems for the Feynman integral G. W. Johnson;D. L. Skoug
- J. Math. phys. v.25 no.5 A bounded convergence theorems for the Feynman integral G. W. Johnson
- the Feynman integral and Feynman's operator caculus. Mem. Amer. Soc. v.62 no.351 Generalized Dyson Seres, Generalized Feynman Diagrams G. W. Johnson;M. L. Lapidus
- J. of K.M.S. v.29 no.2 The Wiener integral over paths in abstract Wiener space K. S. Ryu
- The existence theorem of the operator-valued function space integral over paths in abstract Wiener space K. S. Ryu;S. C. Yoo