• Published : 2000.11.01


We classify complete intersections I of grade 3 in a regular local ring (R, M) by the number of minimal generators of a minimal prime ideal P over I. Here P is either a complete intersection or a Gorenstein ideal which is not a compete intersection.


  1. Proc. Natl. Acad. Sci. U.S.A. v.45 Unique factorization in the regular local ring M. Auslander;D. Buchsbaum
  2. J. Algebra v.105 A structure theorem for a Class of Grade Three Perfect Ideals A. Brown
  3. Amer. J. Math. v.99 no.3 Algebra Structure for finite free resolutions and some Structure Theorems for ideals for codimension 3 David Buhsbaum;David Eisenbud
  4. Proc. Cambridge Philos. Soc. v.64 On the ideals of finite homological dimension in local ring L. Burch
  5. Manuscripta Math. v.12 Certain complexes associated to a sequence and matrix J. Herzog
  6. J. Algebra v.28 Almost complete intersections are not Gorenstein Rings Ernst Kunz
  7. Trans. Amer. Math. Soc. v.270 Structure theory for a class of grade four Gorenstein ideals A. Kustin;M. Miller
  8. J. Algebra v.95 Tight Double Linkage of Gorenstein Algebras Andrew R. Kustin;Matthew Miller
  9. Invent. Math. v.26 Liaison des varietes algebriques C. Peskine;L. Szpiro