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Fuzzy Linear Regression Model Using
the Least Hausdorff-distance Square Method

Sang Sun Choil’, Dug Hun Hong?), and Dal Ho Kim3

Abstract

In this paper, we review some class of t-norms on which fuzzy arithmetic
operations preserve the shapes of fuzzy numbers and the Hausdorff-distance between
fuzzy numbers as the measure of distance between fuzzy numbers. And we suggest
the least Hausdorff-distance square method for fuzzy linear regression model using
shape preserving fuzzy arithmetic operations.
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1. Introduction

Linear regression models are widely used today in business, administration, economics,
engineering, as well as in many other traditionally non-quantitative fields such as social,
health, and biological sciences. In all cases of fuzzy regression, the linear regression is
recommended for practical situations when decisions often have to be made on the basis of
imprecise and/or partially available data. Many different fuzzy regression approaches have
been proposed. Fuzzy regression, as first developed by Tanaka et al.(1980) in a linear system,
is based on the extension principle. Tanaka et al.(1980) initially applied their fuzzy linear
regression procedure to non-fuzzy experimental data. In the experiments that followed this
pioneering effort Tanaka et al.(1982) used fuzzy input experimental data to build fuzzy
regression models. Fuzzy input data used in these experiments were given in the form of
triangular fuzzy numbers. The process was explained in more detaill by Dubois and
Prade(1980). A technique for linear least-square fitting of several fuzzy variable was developed
by Diamond(1988) giving the solution to an analog of the normal equation of classical least
squares. Bardossy(1990) expanded the methodology to include different vagueness criteria and
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provide answers for a non-linear relationship between model variables. Wang and Li(1990)

studied maximum g/E estimation of the parameters of the distribution of the possibility
variables and presented two different fuzzy linear regression models of fuzzy variables using
maximum g/E estimation and entropy of possibility variables. In addition to the above, fuzzy
maximum-likelihood regression has been presented by Okuda et al.(1992). This method
develops the maximum-likelihood estimates of the model’s parameters by the usual statistical
method under fuzzy observations. Furthermore, Sakawa and Yano(1992) proposed a
multiobjective programing approach for obtaining fuzzy linear regression models. The
application of ‘the statistical technique for fuzzy numbers was introduced by Viertl(1996). The
comparison between fuzzy and statistic theory has been presented by Kim et al.(1999).

In this paper, we introduce some class of shape preserving fuzzy arithmetic operations
based on sup-t-norm convolution. Hausdorff measure of distance between fuzzy numbers is
defined and then a least-square optimization is performed to estimate the regression
parameters. It is noted that Diamond(1988) used a different distance measure and proposed

so-called fuzzy least squares. Some examples on estimations of parameters based on Ty

=Min, T y~the weakest t-norm and 7T p=Yager’'s t-norm are given,
2. Preliminaries

Definition 2.1. Let R be the real number field. ¢ : R — [0, 1] is called a fuzzy number if
(1) Va=(0,1], p,={x; #(x) = a} is a finite closed interval.
2) m={x:pu(x)=1}#0.
Note: F(R) is the set of all fuzzy numbers.

Definition 2.2. For p = F(R), u is called symmetric if
xR - 2+ plxg+x)=pulx;—x), VxR,

In this cases, xp is called mean of . If x;=0, then g is called O-symmetric and denoted

by .

Definition 2.3. Let z be a O-symmetric fuzzy number; L - is the family of fuzzy numbers

generated by —;z- if

L; = {0Ha. b | Qz=4(-552), a=R, b=R.},

where R, =[0, +o0). If =0, then ;( x;a)z{ (1) :)fth);r=wcizs’e

In this, it is said that « is a center and & is a width.
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Definition 2.4. Let X=[0,1], V is the Cartesian product of X. A t-norm is a function T
from V into X which satisfies the following:

1) T(x,0 =0, T(x,1)=x,

2 T(x,3)=T0,x),

3) (x=x',y<y) = T(x, )< T(x', ),

4 T(T(x,y),2)= T(x, T(y,2)).

Also, it can be extended to n dimension by deductive method and denoted by

T )= Tl 20 = TCTCT( Ty, 20), %), % ) ).

=1,

Example 2.1.
(1) Tal gty (xy), e 0 x,)) = min {g1(x1), -, £,(x,)} is called the minimum t-norm, denoted

by TM.

l{l(xl) if wolxgy=,,=p,(x,)=1,
(2) TW’(#I (xl),--.,/ln(xn))z l;n(xn) if lll(xl):’-.-’=un__l(x"_1)=1,
0 otherwise.

is called the weakest t-norm, denoted by Ty.

® Tolun () eaen)) = max{0, 1-( B0 —sx?) ),

where 1/p+1/g=1, is called the parameterized Yager t-norm, denoted by T'p.

Definition 2.5. Let f:R” — R be a real-valued mapping and xj,--,%, be n fuzzy numbers.
Then the extension principle(sup-t-norm convolution) defines
Ry, )(9) = sup{ Tty (%)), =, {x ) (%), o+, x ) ER", y= Rxy, =+, x,)},

where T is an arbitrary t-norm.

Property 2.1. [5, 9] Let Q=(a;,b,), Q@ (c;,d)e L, ¢,;=R, and i=1,--,n.

If t-norm is Ty, then

2e@iaib) = Qi Heas Sleld) =L,

If t-norm is T, then

Z‘eiQ;(dz‘,b,‘) = Q;( gleiah iznfa?(_,’ " {Ie,{b,»}) L.

and
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2,Q3(ai 5)Q5(cid) = Qi Baw, ;T llaldyleibd) < L.

] )

If t-norm is 7Tp, then

3 eQ5aib) = Q3 Biewn (Zlels)n) = L.

with the extreme cases;

e g=1(p — ) (min-operator);

g‘e,Q;(ai,bi) = Q;( ;e,ai, g:lle,{b,.) eL-.

o p=1(g— o) (bounded difference);
g‘eiQ;(di,bi) = Q;( Zleiai’ _max n {lel*b1}> € LZ

1= 1’...’

Example 2.2. Consider
1+x if xe[—1,0],

Trilx)={ 1—«x if x< (0,1],
0 otherwise,
Nor{x)=¢e —""z,

and

[ 1—-x*if xe[—-1,11,
Par(x)—[ 0 otherwise.

These are 0-symmetric fuzzy number and the family of fuzzy numbers generated by 777,
Nor, and Par are called trigonometric, normal, and parabolic respectively. Write

Tri(a, b) =Q r,(a, b), Nora,b)=Q n,(a,b), and Par(a, b)= Q p.{a,b).

Definition 2.6. Let A, B the compact subsets in R. Let
_ sup inf _ sup  inf _ }
WA, B) = max{ P B Ja—sl, g2 T la—sl},
where A, B # ©. Then k is the Hausdorff-metric.

Definition 2.7. Let y,, ¢y € F(R). We call that
1
H(py, py) = fo It 1q, 1 20) dat

is the Hausdorff-distance between fuzzy numbers.

Property 2.2. [7] Let u; = Q4(a;,b), i = 1,2, where © is a O-symmetric fuzzy number.
Then



Fuzzy Linear Regression Model Using the Least Hausdorff-distance Square Method 647

H(uy, pg) = lay—ayl + 116, —b,|, where [ = foll u N a)|da
In this case, [ is exactly the half of fR u(x) dx.
Example 2.3. If £ is trigonometric, then _L w(x) dx = 1.
If x is normal, then fR;(x) dx = 1.

If u is parabolic, then fRZ(x) dx = %—
3. Fuzzy linear regression model using
the least Hausdorff-distance square method

This section considers the linear regression model of fuzzy numbers, that is, a model with
k regressor variables X, -,X, that has a relationship with a response variable Y that is a

straight line. This linear regression model is
Y= 8+ BiXy + - + BuXy,
where the coefficients f;, By, **,8r are unknown constants(or fuzzy numbers) and
Y, X,, . X, are fuzzy numbers. Now our problem is how to optimally determine the
coefficients B8i=0,1, -, k) by observing fuzzy numbers. It is considered in this section that

fuzzy numbers are limited to some class of fuzzy numbers L.

3.1 Estimation of coefficients in fuzzy linear regression model using the least
Hausdorff-distance square method.

Let X;= Qu(a;by) and Y;=Qu(c,;,d). Write Y;= fy+BXy;++BXy
j=1,-,n Like referring to earlier, we can have t-norm such that ?, = Q(e;,f), in
that e; and f; are the function of coefficients. For instance, there are the minimum t-norm,
the weakest t-norm, and the parameterized Yager t-norm. Then 7, is the estimated fuzzy
number of Y, Thus, if one wishes to fit a straight line through a set of fuzzy numbers, the
equation Y=R8,+ B X+ -+ BuX, provides a straight line that minimizes the sum of

squares of the Hausdorff-distance errors between the observed fuzzy numbers and the
estimated fuzzy numbers, say

SSHE(By, -, By) = ghz(y,.~7,->.
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The quantities SSHE' is called the Hausdorff-distance error sum of square. This method is
called the least Hausdorff-distance square method. and Z’\l ,(/?\k is called the least
Hausdorff-distance square estimation(MHE) of A, -, 8.

3.2 Examples

We now consider some illustrative examples for above models.
Example 3.1. We take initial data from the Table 1.

Table 1. Initial data.

Y X
Y: = (2.5, 0.38) Xy = (6.0, 0.6)
Y; = (2.0, 0.4) Xz = (9.0, 1.35)
Y; = (3.0, 0.45) X3 = (12.0, 1.2)
Y, = (2.5, 0.5) Xy = (12.0, 2.4)
Y; = (3.5, 0.35) X5 = (15.0, 1.5)
Ys = (3.0, 0.3) X = (15.0, 2.25)
Y; = (3.5, 0.7) Xy = (18.0, 3.6)
Ys = (4.0, 0.8) X = (21.0, 2.1)

If T=Ty X;i=Qa; by, Y;= Q:(c;,d), and By, ",8+=R, then by Property 2.1

Y, = QZ( Z{)dijﬁi, gﬂb;’j'ﬂil),

We estimate B, and B, by least Hausdorff-distance square method. Now,

where ap;=1 and by =0.
SSHE By, 8) = 2(Ie,~ (Bt By % @) + lld;,— 1811 b, 1)

1 J—— —~ —~ o~
where [ = fo | « 1(ar)la’ar. We have to choose B; and B, such that SSHE(B,, B)) =

min
BO, Bl
Bo=1.249, B,=0.131, and SSHE(B,, B)) = 1.244.

SSHE(f,, By). In this cases, if x= T7i, then [=1/2 and the estimated parameters is

If T=Ty X;=@Qzla; by, Y= Qz(c;,d), By=Qz(e, /), and By, *,B:=R, then
by Property 2.1
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71‘ = QZ(%'*’ Zlaijﬁi, fot gbijlﬁil)-
We estimate f;, and B, by least Hausdorff-distance square method. Now,
SSHE( By, 8) = 2(le;— (ev+ By X ay)l + ld;~ o+ 18116, )1V,
where [ = foll ;—l(a)lda. We have to choose e, f,, and B, such that
SSHE(ey, 7y, BY) = min SSHE(ey, fy, B)). In this cases, if g= T, then [/=1/2 and

e, fo, B
the estimated parameters is B, = (1.355, 0.234), B,=0.123, and SSHE(B,, B,) =0.829.

Example 3.2. We take the initial data from the Table 1 in Example 3.1. If T= Tp_s,
Xi=Qua;, by, Y,= Q3(c;,dp, and By, -, B:ER, then by Property 2.1

1
V= 0 a6 Zoata?) ).

We estimate S, and B, by least Hausdorff-distance square method. Now,

where qp;=1 and by;=0.

SSHE(By, 8) = (e~ (Bt By )l + 11~ 1811 % b1,

l - - o B~ —~ —~
where [ = j(;| u 1(ar)|a’(1. We have to choose By and A such that SSHE(B,, 5)) =

min
By, By
is By=1.249, B,=0.131, and SSHE(B,, B)) =1.244.

SSHE(B,, 8y). In this cases, if #= T#, then /=1/2 and the estimated parameters

If T=Tps, Xj=@Qu(a; by, Y= Qu(c,d), By=Q (e, fo), and By, B, eR,
then by Property 2.1

1
7j = Q;(90+ g‘aijﬁi, (ﬁo'*‘ gl(bijllgil)s) 5).

We estimate £, and ) by least Hausdorff-distance square method. Now,
1
SSHE( By, 8) = i(le;—(en+ By % ay)l + lld;— (A +18,1°x 63 T1)%,
1 —_— o~ o~
where [= fo | % l(af)|a’ar. We have to choose e, f;, and fB; such that

SSHE(ey, 7, B) = egrr}ionﬂl SSHE(ey, fy, B1). In this cases, if p= Tri, then [=1/2 and
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the estimated parameters is Bp=(1.279, 0.399), B, =0.128, and SSHE(B,, B;) = 0.828.

Example 3.3. We take the initial data from the Table 1 in Example 3.1. If T=Ty ,
X;i=Q(a; by, Y= Q4(c;,dp, and By, -, B,ER, then by Property 2.1

- o Taib T b408D),
where ag;=1 and by;=0.

We estimate £y and B, by least Hausdorff-cistance square method. Now,

SSHE(By, B)) = g}(lc,-— (Bot+ By xaipl + ld;— 18y X b1j|)2.

| S —~ —~ o~
where [ = fo' u 1(af)|cz'af. We have to choose B, and B such that SSHE(S;, B1) =

g’n 1%, SSHE(B,, 81). In this cases, if = T#i, then /=1/2 and the estimated parameters
0, M1

is By=1.249, B;=0.131, and SSHE(B,, By =1.244.

I T=Tw Xy=Q:(as by Y;= Quc;.d) By=Q(e,fo), and By, B4R, then
by Property 2.1

Y; = Q;(e0+ glaijlgi’ max{fo, - max.’k {bijlﬁil}}).

=1,
We estimate B, and B, by least Hausdorff-distance square method. Now,

SSHE(BO , /91) = glﬂcj_ (eo+ By % dxj)| + lldj_' Inax {fo, |.31| X b1,'}|)2,
1 —~ —
where [= L | % ! (e)lda. We have to choose e, fo, and B, such that

SSHE(ey, 7, B) = eon;jgn,b’l SSHE(ey, f, B1). In this cases, if w=Tri, then [=1/2 and

the estimated parameters is By = (1.277, 0.400), B,=0.128, and SSHE(B,, B)) =0.841.

f T=Tw X;=Q(a; by, Y= Q3¢ d), By=Qzley, /), and Bi=Q(e;, f),
then by Property 2.1
—Y_j = Qz( 1200 ijeiv i=r8?}'(", k {‘a l]lfnlellbt]}) »
where ag;=1 and by;=0.

We estimate B; and ) by least Hausdorff-distance square method. Now,
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SSHE(By, B) = gl(lcj_ (egt ey X a)l+ Ild;— max {fy, lay,| A, |e1|b1j}{)2.
l —_— —~ ~
where [ = j{; | % ' (a)lde. We have to choose ey, fo. e, and £, such that

SSHE ey, %o, 1, /1) = e };lil;l A SSHE(ey, 1y, €1, f1). In this cases, if u= Tri, then

[=1/2 and the estimated parameters is By=(1.363,0.400), and 5, = (0.121,0.0267).

Figure 1. The fuzzy linear regression model using 7Ty with real S, and real f;.

Figure 2. The fuzzy linear regression model using 7'y with fuzzy B; and real S;.
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Figure 3. The fuzzy linear regression model using Ty with fuzzy Byand fuzzy 8.

In Figure 1, Figure 2, and Figure 3, we draw them using the result of Example 3.3. In

Figure 1, By and B are all constants. In Figure 2, By is a fuzzy number and S, is a
constant. In Figure 3, By and fB; are all fuzzy numbers. the eight rectangles are loci of the
membership functions of the fuzzy input-output data (X;;,Y,), i=1,--,8, whose values

become zero. The straight line and two brcken lines are loci of the membership function of

the fuzzy linear regression model where the width of X is gbu/8 = 1.875.

Table 2. Compared table

t-norm B\o Z’\l SSHE
Ty 1.249 0.131 1.244
(1.355, 0.234) 0.123 0.829

T ps 1.249 0.131 1.244
(1.279, 0.399) 0.128 0.828

Tw 1.249 0.131 1.244
(1.277, 0.400) 0.128 0.841

(1.363, 0.400) (0.121, 0.0267) 0.801

The summarized result of Example 3.1, 3.2, and 3.3 are shown in Table 2. Comparing the
estimation, the value SSHE is the smallest in case =Ty and B, and B, are all fuzzy
numbers. But, for the cases where real f;, real £, and fuzzy f;, real B;, the results are

very similar even though t-norm are different.
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If we separately inspect the center and width of observed fuzzy numbers in example then
the slope of center using the linear regression in statistics is 0.12037 and the mean width of
the response is 0.2587 times of that of the regressor. Above~mentioned, the linearity of center
and width exists but the slopes of the linear model are different. Looking over the Figure 1,

the estimated width of Y doesn’t sufficiently express the observed width of Y. Because the
estimated slope of B, =0.131 is much less than the slope of width of 0.2587. B, =0.131 is

slightly more than the slope of center of 0.12037 as we expect. This is a indecisive result as
we excessively use the one constant to explain the linearity of center and width. In Figure 2,
the estimated fuzzy linear regression model express the observed fuzzy data on the whole.
But B\l =(),128 is slightly interfered by the slope of width of 0.2587. On the other hand, in

Figure 3, the estimated fuzzy linear regression model well expresses the observed fuzzy data
and the interference isn’'t exist. Hence it is better using the fuzzy number to estimate the
coefficient.

4 Conclusion

In this paper, we have presented a new method to evaluate fuzzy linear regression models
using shape preserving t-norm-based fuzzy arithmetic operations where both input data and

output data are fuzzy numbers. For the cases where real S, real 8, or fuzzy B, real 5,

the value SSHE and the coefficients are very similar even though t-norms are different. As

we saw in this paper, Ty-based fuzzy arithmetic operations (addition and multiplication)
preserves the shape of fuzzy numbers. Because of this advantage, we can take B and () to

be fuzzy numbers, and the resulting SSHE is the smallest.
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