Selective Separation of Zr(IV) and Th(IV) by (polystyrene-divinylbenzene)-thiazolylazo Chelating Resins(I)

(Polystyrene-divinylbenzene)-thiazolylazo형 킬레이트 수지에 의한 Zr(IV) 및 Th(IV)의 선택적인 분리(I)

  • Lee, Won (Research Institute for Basic Sciences and Department of Chemistry, Kyunghee University) ;
  • Yook, Jin-Kyung (Research Institute for Basic Sciences and Department of Chemistry, Kyunghee University) ;
  • Lee, Si-Eun (Research Institute for Basic Sciences and Department of Chemistry, Kyunghee University) ;
  • Lee, Chang-Heon (Korea Atomic Energy Research Institute)
  • 이원 (경희대학교 기초과학연구소, 문리과대학 화학과) ;
  • 육진경 (경희대학교 기초과학연구소, 문리과대학 화학과) ;
  • 이시은 (경희대학교 기초과학연구소, 문리과대학 화학과) ;
  • 이창헌 (한국 원자력연구소 화학분석부)
  • Received : 2000.03.28
  • Published : 2000.06.25


Two chelating resins, XAD-16-TAC and XAD-16-TAO were synthesized by Amberlite XAD-16 macroreticular resin with 2-(2-thiazolylazo)-p-cresol (TAC) and 4-(2-thiazolylazo)-orcinol (TAO) as functional groups. The sorption behaviour of Zr(IV), Th(IV) and U(VI) with two chelating resins were examined with respect to the effect of pH and masking agent by batch methods. It was obtained that the optimum pH was in the range of 5-6, and two chelating resins showed good separation efficiency of Zr(IV) or Th(IV) by using $NH_4F$ as a masking agent. Characteristics of desorption were investigated with 0.1-2 M $HNO_3$ as desorption agent. It was found that 2 M $HNO_3$ showed high desorption efficiency to most of metal ions except Zr(IV). XAD-16-TAC resin is applied to separation and preconcentration of trace Zr(IV) from mixed metal ions. Also, Th(IV) ion can be successfully separated from U(VI) and Zr(IV) ion by using XAD-16- TAO resin.


Chelating resin;Polystyrene-divinylbenzene;2-(2-thiazolylazo)-p-cresol(TAC);4-(2-thiazolylazo)-orcinol(TAO);Separation;Preconcenration


Supported by : 한국학술진흥재단


  1. Radiochimica Acta. v.79 D. Schumann;M. Andrassy;H. Nitsche;A. F. Novgordov;H. Bruchertseifer
  2. Radiochimica Acta. v.72 D. Schumann;S. Fischer;R. Dressler;S. Taut;H. Nitsche
  3. Bunseki Kagaku v.11 K. Motojima;H. Hashitani;H. Ycshida
  4. Zh. Analit. Khim. v.29 Z. P. Moseeva;G. P. Pinchuk;A. B. Sokolov;A. G. Karabash;S. I. Deizulaev
  5. Radiochimica Acta v.75 M. Yoshihiro;I. Shuichi;T. Hideyo;Y. Zenko
  6. J. of Appl. Chem. v.9 R. V. Davies;J. Kenuedy;E. S. Lane;J. L. Willans
  7. Russian. J. of Appl. Chem. v.71 no.11 V. M. Gelis;E. A. Chuveleva;L. A. Firsova;G. B. Maslova;V. V. Milyutin
  8. Anal. Sci. & Tech. v.9 no.3 J. H. Lim;M. K. Kim;C. H. Lee;W. Lee
  9. Microchemical J. v.61 B. S. Garg;R. K. Sharma;N. Bhojak;S. Mittal
  10. J. of Nuclear and Technology v.35 W. Yuczhou;K. Mikio;M. T. Valentini;N. Takashi;S. Kazuhiroi;M. Akira;O. Shinobu
  11. Anal. Sci. & Tech. v.8 no.3 J. M. Suh;M. K. Kim;J. H. Lim;C. H. Lee;W. Lee
  12. Anal. Chem. v.71 Y. Tetsuya;M. Akio;N. Eizo
  13. Applied Radiochimica and Isotopes v.51 V. C. Caramella;L. Maggi;M. T. Valentini
  14. Applied Radiochimica and Isotopes v.51 M. T. Valentini;L. Maggi;V. C. Caramella
  15. Anal. Sci. & Tech. v.10 no.4 W. Lee;K. M. Seol;H. S. An;C H. Lee;J. H. Lim
  16. Anal. Chim. Acta v.339 C. H. Lee;J. S. Kim;M. Y. Sun;W. Lee
  17. Anal. Sci. v.13 A. Sohair;E. I. Reefy;T. T. Selim;F. A. Hisham
  18. Anal. Sci. & Tech. v.6 C. H. Lee;S. E. Lee;J. H. Lim;T. Y. Eom;I. W. Kim;C. H. Kang;W. Lee
  19. Radiochimica Acta. v.80 D. Schumann;M. Andrassy;H. Nitsche
  20. Anal. Chem. v.90 M. Griesbach;K. Lieser;A. Makromol