DOI QR코드

DOI QR Code

Bifurcation to Chaotic Thermal Convection in a Horizontal Annulus

수평 환형 공간에서의 혼돈 열대류로의 분기

  • Published : 2000.09.01

Abstract

Thermal convection in a horizontal annulus is considered, and the bifurcation phenomena of flows from time-periodic to chaotic convection are numerically investigated. The unsteady two-dimensional streamfunction-vorticity equation is solved with finite difference method. As Rayleigh number is increased, the steady flow bifurcates to a time-periodic flow with a fundamental frequency, and afterwards a period-tripling bifurcation occurs with further increase of the Rayleigh number. Chaotic convection is established after a period-doubling bifurcation. A periodic convection with period 4 appears after the first chaotic convection. At still higher Rayleigh numbers, chaotic flows reappear.

Keywords

Natural Convection;Oscillatory Convection;Bifurcation;Period-Tripling Bifurcation;Chaos

References

  1. Powe, R.E., Carley, C.T. and Bishop, E.H., 1969, 'Free Convective Flow Patterns in Cylindrical Annuli,' J. Heat Transfer, Vol. 91, pp. 310-314
  2. Rao, Y.F., Miki, Y., Fukuda, K., Takata, Y. and Hasegawa, S., 1985, 'Flow Patterns of Natural Convection in Horizontal Cylindrical Annuli,' Int. J Heat and Mass Transfer, Vol. 28, pp. 705-714 https://doi.org/10.1016/0017-9310(85)90193-0
  3. Mack, L.R. and Bishop, E.H., 1968, 'Natural Convection Between Horizontal Concentric Cylinders for Low Rayleigh Numbers,' Quarterly J. Mech. and Appl. Math., Vol. 21, pp. 223-241 https://doi.org/10.1093/qjmam/21.2.223
  4. Custer, J.R. and Shaughnessy, E.J., 1977, 'Thermoconvective Motion of Low Prandtl Number Fluids Within a Horizontal Cylindrical Annulus,' J. Heat Transfer, Vol. 99, pp. 596-602
  5. Fant, D.B., Prusa, J. and Rothmayer, A.P., 1990, 'Unsteady Multicellular Natural Convection in a Narrow Horizontal Cylindrical Annulus,' J. Heat Transfer, Vol. 112, pp. 379-387
  6. Yoo, J.-S., Choi, J.Y. and Kim, M.-U., 1994, 'Multicellular Natural Convection of a Low Prandtl Number Fluid Between Horizontal Concentric Cylinders,' Numerical Heat Transfer, Part A, Vol. 25, pp. 103-115 https://doi.org/10.1080/10407789408955939
  7. Yoo, J.-S., 1998, 'Natural Convection in a Narrow Horizontal Cylindrical Annulus,' Int. J. Heat and Mass Transfer, Vol. 41, pp. 3055-3073 https://doi.org/10.1016/S0017-9310(98)00051-9
  8. Yoo, J.-S., 1999, 'Transition and Multiplicity of Flows in Natural Convection in a Narrow Horizontal Cylindrical Annulus : Pr= 0.4,' Int. J. Heat and Mass Transfer, Vol. 42, pp. 709-722 https://doi.org/10.1016/S0017-9310(98)00197-5
  9. Schuster, H.G., 1984, 'Deterministic Chaos,' Physik-Verlag, pp. 1-136
  10. Gollub, J.P., Benson, S.V., 1980. 'Many Routes to Turbulent Convection,' J. Fluid Mech. Vol. 100, pp. 449-470 https://doi.org/10.1017/S0022112080001243
  11. McLaughlin, J.B., Orszag, S.A, 1982, 'Transition from Periodic to Chaotic Thermal Convection,' J. Fluid Mech. Vol. 122, pp. 123-142 https://doi.org/10.1017/S0022112082002122
  12. Yoo, J.-S., Kim, M.-U., 1991. 'Two-Dimensional Convection in a Horizontal Fluid Layer with Spatially Periodic Boundary Temperatures,' Fluid Dynamics Research, Vol. 7, pp. 181-200 https://doi.org/10.1016/0169-5983(91)90057-P
  13. Guzman, A.M., Amon, C.H., 1994, 'Transition to Chaos in Converging -Diverging Channel Flows: Ruelle -Takens -Newhouse Scenario,' Phys. Fluids A, Vol. 6, pp. 1994-2002 https://doi.org/10.1063/1.868206
  14. Yoo, J.-S., 1999, 'Prandtl Number Effect on Bifurcation and Dual Solutions in Natural Convection in a Horizontal Annulus,' Int. J. Heat and Mass Transfer, Vol. 42, pp. 3275-3286 https://doi.org/10.1016/S0017-9310(98)00384-6
  15. Roache, P.J., 1972, 'Computational Fluid Dynamics', Hermosa, pp. 53-64
  16. Buzbee, B.L., Golub, G.H. and Nielson, C.W., 1970, 'On Direct Methods for Solving Poisson's Equations,' SIAM J. Numerical Analysis, Vol. 7, pp. 627-656 https://doi.org/10.1137/0707049
  17. Bendat, J.S. and Piersol, A.G., 1986, 'Random data : Analysis and Measurement Procedures,' John Wiley and Sons, New York, pp. 325-424
  18. Guzman, A.M., Amon, C.H., 1996, 'Dynamical Flow Characterization of Transitional and Chaotic Regimes in Converging-Diverging Channels,' J. Fluid Mech. Vol. 321, pp. 25-57 https://doi.org/10.1017/S002211209600763X
  19. Goswami, B., 1997, 'The Role of Period Tripling in the Development of a Self Similar Bifurcation Structure,' Int. J Bifurcation and Chaos, Vol. 7, pp. 2691-2706 https://doi.org/10.1142/S0218127497001813
  20. Kimura, K., Schubert, G., Straus, J.M, 1986, 'Route to Chaos in Porous-Medium Thermal Convection,' J. Fluid Mech. Vol. 166, pp. 305-324 https://doi.org/10.1017/S0022112086000162
  21. Mukutmoni, D. and Yang, K.T., 1993, 'Rayleigh-Benard Convection in a Small Aspect Ratio Enclosure: Part II- Bifurcation to Chaos,' J. Heat Transfer, Vol. 115, pp. 367-376