DOI QR코드

DOI QR Code

이상 회체가스 가중합산모델을 적용한 미분탄 연소의 수치적 연구

유명종;강신재;백승욱
Yu, Myoung-Jong;Kang, Shin-Jae;Baek, Seung-Wook

  • 발행 : 2000.10.01

초록

A numerical study on swirling pulverized coal combustion in an axisymmetric enclosure is carried out by applying the 2-phase weighted sum of gray gases model (WSGGM) approach with the discrete ordinate method (DOM) to model the radiative heat transfer equation. In the radiative transfer equation, the same polynomial equation and coefficients for weighting factors as those for gas are adopted for the coal/char particles as a function of partial pressure and particle temperature. The Eulerian balance equations for mass, momentum, energy, and species mass fractions are adopted with the standard and RNG k-${\varepsilon}$ turbulence model, whereas the Lagrangian approach is used for the particulate phase. The eddy-dissipation model is employed for the reaction rate for gaseous mixture, and the single-step and two-step first-order reaction model for the devolatilization process for coal. Special attention is given to establish the thermal boundary conditions on radiative transfer equation By comparing the numerical results with experimental ones, the radiation model used here is confirmed and found to provide an alternative for simulating the radiative transfer.

키워드

이상 회체가스 가중합산법;열적 비평형;미분탄 연소

참고문헌

  1. Hottel, H. C, and Sarofim, A. F., 1967, Radiative Transfer, Mc-Graw Hill, Inc.
  2. Choi, C. E., and Baek, S. W., 1996, 'Numerical Analysis of a Spray Combustion with Nongray Radiation Using Weighted Sum Gray Gases Model,' Combust. Sci. Tech., Vol. 115, pp. 297-315
  3. Liu, F., Becker, H. A., and Binder, Y., 1998, 'A Comparative Study of Radiative Heat Transfer Modelling in Gas-Fired Furnaces using the Simple Gray Gas and the Weighted-Sum-of-Gray-Gases Models,' Int. J. Heat Mass Transfer, pp. 3357-3371 https://doi.org/10.1016/S0017-9310(98)00098-2
  4. Smith, T. F., Shen, Z. F., and Friedman, J. N., Nov. 1982, 'Evaluation of Coefficients for the Weighted Sum of Gray Gases Model,' ASME J, Heat Transfer, Vol. 104, pp. 602-608
  5. Coppalle, A., and Vervisch, P., 1983, 'The Total Emissivities of High-Temperature Flames,' Combust. Flame, Vol. 40, pp. 101-108 https://doi.org/10.1016/0010-2180(83)90154-2
  6. Lallemant, N., Sayre, A., and Weber, R., 1996, 'Evaluation of emissivity correlations for H20-C02-N2/Air Mixtures and Coupling with Solution Methods of the Radiative Transfer Equation,' Prog. Energy Combust. Sci. Vol. 22, pp. 543-574 https://doi.org/10.1016/S0360-1285(96)00010-X
  7. Johnson, T. R., and Beer, J. M., 1972, 'Radiative Heat Transfer in Furnaces: Further Development of the Zone Method of Analysis,' Fourteenth Symp. (Int.) on Combust. /The Combustion Institute, pp. 639-649
  8. Felske, J. D., and Charalampopoulos, T. T., 1982, 'Gray Gas Weighting Coefficients for Arbitrary Gas-Soot Mixtures,' Int. J. Heat and Mass Transfer, Vol. 25. No. 12. pp. 1849-1982 https://doi.org/10.1016/0017-9310(82)90107-7
  9. Soufiani, A., and Djavdan, E., 1994, 'A Comparison between Weighted Sum of Gray Gases and Statistical Narrow-Band Radiation Models for Combustion Applications,' Combust. Flame, Vol. 97. pp. 240-250 https://doi.org/10.1016/0010-2180(94)90007-8
  10. 박재현, 1998.2, 복사 효과를 고려한 기체-입자 직접 접촉식 열교환기 해석, 한국과학기술원 석사학위 논문
  11. Yu, M. J., Baek, S. W., and Park, J. H., 2000, 'An Extension of the Weighted Sum of Gray Gases Non-Gray Gas Radiation Model to a Two Phase Mixture of Non-Gray Gas with Particles,' Int. J. Heat and Mass Transfer, Vol. 43, pp. 1699-1713 https://doi.org/10.1016/S0017-9310(99)00265-3
  12. Ohtake K, Okazaki K., 1988, 'Optical CT Measurement and Mathematical Prediction of Multi-temperature in Pulverized Coal Combustion Fluid,' Int. J. Heat and Mass Transfer. Vol. 31, pp. 397-405
  13. Farzan, H., and Essenhigh, R.H., 1982, 'High Intensity Combustion of Coal,' Nineteenth Symposium (Int.) on Combust. pp./The Combustion Institute, pp. 1105-1111
  14. Mackowski D.W., Altenkirch R.A., Peck R.E., and Tong T.W., 1983, 'A Method for Particle and Gas Temperature Measurement in Laboratory-Scale, Pulverized-Coal Flames,' Combust. Sci. Tech. Vol. 31, pp. 139-153 https://doi.org/10.1080/00102208308923636
  15. Butler, B. W., Denison, M. K., and Webb, B. W., 1994, 'Radiation Heat Transfer in a Laboratory-Scale, Pulverized Coal-Fired Reactor,' Experimental Thermal and Fluid Science, pp. 69-79 https://doi.org/10.1016/0894-1777(94)90010-8
  16. Truelove, J. S., 1984, 'The Modeling of Flow and Combustion in Swirled, Pulverized-Coal Burners.,' Twentieth Symp. (Int.) on Combust. /The Combustion Institute, pp.523-530
  17. Chui, E. H., Hughes, P. M. J., and Raithby, G. D., 1993, 'Implementation of Finite Volume Method for Calculating Radiative Transfer in a Pulverized Fuel Flame,' Combus. Sci. Tech., Vol. 92, pp. 225-242 https://doi.org/10.1080/00102209308907673
  18. Denison, M.K., and Webb, B.W., 1993, 'Modeling of Radiative Transfer in Pulverized Coal-Fired Furnaces: Effect of Differing Particle and Gas Temperature,' Transport Phenomena in Thermal Eng. Vol.1, pp. 191-196, Begell House
  19. Lockwood, F. C, Salooja, A. P., and Syed, S. A., 1980, 'A Prediction Method for Coal-Fired Furnaces,' Combust. Flame, Vol. 38, pp. 1-15 https://doi.org/10.1016/0010-2180(80)90033-4
  20. Lockwood, F. C, and Mahmud, T., 1988, 'The prediction of swirl burner pulverized coal flames,' Twenty-Second Symp. (Int.) on Combust. /The Combustion Institute, pp. 165-173
  21. Modest, M. F., 1993, Radiative Heat Transfer, McGraw-Hill, Inc.
  22. Yuen, M. M., Ma, A., 1992, 'Evaluation of Total Emittance of an Isothermal Nongray Absorbing, Scattering Gas-Particle Mixture Based on the Concept of Absorption Mean Beam Length,' ASME J. Heat Transfer, Vol. 114. pp. 653-658
  23. Hassan, M. A., Hirji, K. A., Lockwood, F. C, and Moneib, H. A., 1985, 'Measurements in a Pulverized Coal-Fired Cylindrical Furnaces,' Experiments in Fluid, Vol. 3. pp. 153-159 https://doi.org/10.1007/BF00280453
  24. Crowe, C. T., Sharma, M. P., and Stock, D. E., Jun., 1977, 'The Particle-Source-In Cell (PSI-CELL) Model for Gas-Droplet Flows,' J. Fluid Eng., pp. 325-332
  25. 유명종, 2000.2, 열복사를 고려한 미분탄의 연소 및 NOx 배출 현상에 관한 연구, 한국과학 기술원 박사학위 논문
  26. Magnussen, B. F., and Hjertager, B. H., 1977, 'On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion,' Sixteenth Symp. (Int.) on Combust. /The Combustion Institute, pp. 719-729
  27. Gosman, A. D., and Idcriah, F. J. K., 1976, TEACH-T : A General Computer Program for Two-Dimensional, Turbulent Recirculating Flow, Imperial College, London, U. K.
  28. Versteeg, H. K., and Malalasekera, W. (1995) An Introduction to Computational Fluid Dynamics, Longmn Scientific & Technical
  29. Xia, J. L., Yadigaroglu, G., Liu, Y.S., Schmidli, J., and Smith, B. L., 1998, 'Numerical and experimental study of swirling flow in a model combustor,' International Journal of Heat Mass Transfer, vol. 41, No. 11, pp. 1485-1497 https://doi.org/10.1016/S0017-9310(97)00239-1
  30. Anagnostopoulos, J. S., Sargianos, N. P., and Bergclcs, G., 1993, 'The Prediction of Pulverized Greek Lignite Combustion in Axisymmetric Furnaces.,' Combust. Flame, Vol. 92, pp. 209-221 https://doi.org/10.1016/0010-2180(93)90033-Y
  31. Lockwood, F. C, Rizvi, S. M. A., Lee, G. K., and Whaley, H., 1984, 'Coal Combustion Model Validation Using Cylindrical Furnace Data,' Twentieth Symp. (Int.) on Combust. /The Combustion Institute, pp. 513-522
  32. Baum, M. M., and Street, P. J., 1971, 'Predicting the combustion Behavior of Coal Particles,' Combust, Sci. Tech., Vol. 3, pp. 231-243 https://doi.org/10.1080/00102207108952290
  33. Denison, M. K., and Webb, B. W., 1993, 'A Spectral Line-Based Weighted-Sum-of Gray Gases Model for Arbitrary RTE Solvers,' ASME J. Heat Transfer,Vol. 115. pp. 1004-1012
  34. Holman, J. P., 1989, Heat Transfer., Mc-Graw Hill, Inc.
  35. Denison, M. K., and Webb, B. W., 1994, 'k-Distribution and Weighted-Sum-of-Gray-Gases-A Hybrid Model,' Proceed. of the tenth Int. Heat Transfer Conference, Vol. 2, pp. 19-24
  36. Boyd, R. K., and Kent, J. H., 1986, 'Three-Dimensional furnace computer modeling,' Twenty-First Symp. (Int.) on Combust. /The Combustion Institute, pp. 265-274
  37. Khalil, E. E., Spalding, D. B., and Whitelaw, J. H., 1996, 'The Calculation of Logical Flow Properties in Two-Dimensional Furnaces,' Int. J. Heat Mass Transfer, Vol. 18, pp. 775-791 https://doi.org/10.1016/0017-9310(75)90207-0
  38. Liou, T. M., Lien, W. Y, and Hwang, P. W., 1994, 'Large-Eddy Simulations of Turbulent Reacting Flows in a Chamber with Gaseous Ethylene Injecting through the Porous Wall,' Combust. Flame, Vol. 99. pp. 591-600 https://doi.org/10.1016/0010-2180(94)90052-3
  39. Gran, I. R., Mclaaen, M. C, and Magnussen, B. F., 1994, 'Numerical Simulation of Local Extinction Effects in Turbulent Combustion Flows of Methane and Air,' Twenty-Fifth Symp. (Int.) on Combust. /The Combustion Institute, pp. 1283-1291